“指尖的光伏”之光伏组件用背板落砂实验浅析

来源:指尖的光伏发布时间:2013-11-13 15:01:20
  太阳电池背板主要分为含氟背板和不含氟背板两大类,其中含氟背板根据其含氟结构又可分为氟薄膜(如 PVF、PVDF 等)和氟涂层(如改性PTFE、FEVE 等)。无论是氟薄膜还是氟涂层,都需要保证太阳电池组件在户外使用 25 年,因此,背板在户外直接与环境大面积接触时,需要具备卓越的耐长期老化性能,包括湿热、干热、紫外、风沙冲击等等,本文从光伏组件用背板耐落砂冲击实验说起,告诉你真正的户外环境是怎样的?

我们知道,IEC 的标准中并没有提到光伏组件耐风沙冲击的相关要求,并不等于说组件厂商不需要关注这项指标,以中国新疆塔克拉玛干沙漠为例,年均输沙量在数吨,沙漠中心地区年均输沙量甚至高达数十吨,在这种情况下,如果再不对其进行研究,想必电站业主也不放心吧。

现在,越来越多的组件厂商开始关注背板耐风沙冲击的性能,在第九届 CSPV 论坛上,天合光能的代表也对其进行了分析。由于 IEC 中没有相关标准,天合以 ASTM D968-93 为准,研究了砂子对背板外层的影响,消除了大家的疑惑,同时也对真正的户外情况进行深入分析,让与会代表有了更深入的了解。后期如果还碰到 IEC 中没有规定相应标准的情况,希望业界同仁共同努力,进行更合理,更科学的实验,得到更可靠、更令人信服的结果。

背板空气面落砂实验

实验准备:实验前,先检查从导管下端落下的砂流,用底部调整螺钉使装置从中心直至从护卫 90° 的两个位置上观察时,砂束的内心正好落在砂流的中心位置上为止。实验采用的标准石英砂粒径规格在 600-850um(其中粒径小于 600um 的不超过 5%,大于 850um 的不超过 15%),一次倒入量以 2000mL±10mL 数量为宜,流出速度为 21-23.5s 内流出2L。


操作步骤:在每块试块上标出 1 个圆形区域,该区域即为冲击面积,约 0.0005 平米(直径约 25mm),将试板固定在试验器上。调整试板使其标出的圆形区域正好在导管的中心的下方,将一定体积的标准砂灌注到漏斗中,打开开关,使砂通过导管,撞击到样板上。安装在试验器底部的容器收集落下的砂。重复上述操作,直到耐 UV 层破坏,有 4mm 直径的区域露出底材,快接近终点时,可以在漏斗中加 200mL±2mL 的砂。

结果计算:按公式计算待测样品的耐磨性:A=V/T
式中:A 耐磨性,单位为升每微米(L/um)
V 磨料使用量,单位为升(L)
T 耐 UV 层厚度,单位为微米(um)
结果取两次平行测定的算术平均值,保留一位小数。
我们选取了两家背板厂商的背板做了上述实验,分别记为 A 和 B,结果如下表所示。


 

我们发现,A 背板在 55L 落砂实验后表面耐 UV 层被完全磨损,而 B 背板在 190L 落砂实验后,表面耐 UV 层依然存在。意味着 B 背板比 A 背板更好吗?

真正的户外环境是怎样的?

砂的移动有三种形态:滚动、跳动和浮游。滚动是跳动着的砂粒由于碰撞而在地表移动的现象,一般粒径超过500um 的砂会产生这种现象,但此类砂不会飞舞。另一种情况是跳动,这是沙漠特有的现象,这类砂粒粒径在 100-500um,由于风等原因被举起后落下,这是唯一会对背板产生影响的现象。最后一种是浮游,在有风的情况下,可以移动到沙漠以外的地域,北方一些城市的雾霾天气与它有关,该类砂粒粒径小于 100um。

根据武藏工业大学环境情报学院教授吉崎真司的研究,在沙漠表面的砂粒中,只有 10-20% 的砂子飞在地表面 30cm 以上,实际上,西部地区很多电站,其组件离地高度都在 30cm 以上,这样一来,空气中飞舞的砂子将更少。另外,还有一个发现,在砂径为 75-500um 的砂分布着的沙漠中,在地表 20cm 中采取砂粒,占比最高的砂径在 150-210um。

我们以中国塔克拉玛干沙漠为例,选取肖塘和塔中两个地区,分别用梯度集沙仪于沙尘暴条件下进行沙样采集,两个地区的砂粒分布情况如下图所示。(参考文献:新疆师范大学硕士论文《塔克拉玛干沙漠沙粒形貌特征分析》,作者:赵聪敏)


 
看到这里,读者可能已经产生疑惑了,按照 ASTM D968-93 的标准,砂粒粒径在 600-850um,而上图中显示,600-850um的砂粒占比几乎为零,这又是什么原因?

还原真实情况,估算组件寿命

在风沙理论研究与防沙实践中,输沙量是一个重要的物理量和极其有用的工程参数,它表示地表一定高度范围内的输沙总量,是区域风沙活动强度的最直接表征。在塔克拉玛干沙漠,不同地区年输沙量不一,差异很大,例如上文提到的肖塘输沙量仅相当于塔中的一半。


 

既然如此,我们就来计算一下,光伏背板究竟需要怎么的耐磨性才能满足组件 25 年的使用寿命,还是以肖塘和塔中为例,假设组件安装于地面 30cm 以上,主要的砂粒粒径在 63-250um 之间,那么实验面积中应承受的一年的砂粒重量为:

6692kg/m2*y*0.0005m2 = 3.346kg/y
25 年的砂粒重量累计为:
3.346kg/y*25 = 83.65kg
以石英砂的密度为 2.65 计算(根据粒度大小,堆积密度在 1.6-1.7),25 年的累计砂粒体积为:
83.65kg ÷ 1.6 = 52L(颗粒度大小在 63-250um 的砂子)
实际上,能飞到距离地面 30cm 以上的砂只占总比例的 20%,因此,塔克拉玛干肖塘地区和塔中地区 25 年输沙量所需落砂实验的标准分别为:
肖塘:52L*0.2 = 10.4L
塔中:10.4*1.98 = 20.6L

实验结果出人意料,事实上也确实如此,在西部的众多电站中,我还没有听说背板被风沙磨伤的情况,国外某些知名的原材料厂商(大家都知道),一味的强调耐磨性而不考虑实际情况是否有必要,这是不科学也是不负责任的!

重复落砂实验,结果更为可信

天合光能的代表展现了他们在落砂方面做过的一系列研究,由于标准砂的粒径过大,他们以碳化硅进行重复落砂实验,碳化硅的粒径在 180um,表面更为坚硬、锋利,硬度指数为 9,仅次于金刚石的硬度指数 10,经过 30L 的冲击,也未见有磨伤,大大印证了背板在沙漠地区耐用 25 年的可靠性!


读者看到这里,心里也十分清楚了,落砂实验用于背板表层在沙漠地区耐磨寿命的可行性是有的,不过,还需要根据实际情况来改善测试方法,当然,如果能辅之于紫外、湿度、温度等条件,那就更加贴近实际情况了。

结语

在当前光伏危机未除,国内外背板厂商“诸侯割据”的情况下,如何应对新问题和新挑战成为摆在国内光伏同仁面前的一道难题,在背板国产化进程的大环境下,相信我们一定能打破国外原材料厂商的垄断,未来的光伏背板,还看中国!



索比光伏网 https://news.solarbe.com/201311/13/44371.html

责任编辑:shichunhua
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
巴基斯坦首个光伏组件专业测试实验室建成来源:索比光伏网 发布时间:2025-12-08 10:01:55

12月6日,巴基斯坦首个光伏组件专业测试实验室“巴韩光伏组件及相关设备测试实验室”正式揭牌。该实验室由巴基斯坦科学技术部与韩国国际协力团联合打造,将填补巴国光伏组件专业检测领域空白,为其清洁能源转型与产业升级提供关键支撑。该局相关负责人表示,实验室投用后将对每批进口光伏组件实施随机抽样检测,依托专业检测能力筑牢本土市场质量防线。

钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

前沿光伏技术之中间带太阳电池:让低能光子“无处可逃”的超能武器来源:网络 发布时间:2025-11-24 11:09:28

以晶体硅为代表的第一代太阳电池,其效率已接近理论极限,提效空间有限;第二代太阳电池(CdTe、CIGS、非晶/微晶硅等)虽然生产成本较低,但效率偏低,且其中部分材料存在资源稀缺或环境毒性等问题,难以支撑大规模可持续应用。在此背景下,第三代太阳电池应运而生,包括有机光伏、钙钛矿电池、多结叠层、中间带、热载流子、光子/激子倍增以及热光伏等。这些新技术的共同目标是在不增加复杂封装与阳光跟踪系统的前提下,不断推动单片电池转换效率的提升。

中国科学院长春应用化学研究所秦川江Science:钙钛矿光伏用稳定均匀的自组装有机二自由基分子来源:矿物薄膜太阳能电池 发布时间:2025-11-17 09:15:04

全文速览近日,中国科学院长春应用化学研究所等单位联合在钙钛矿太阳能电池中开发了两种开壳层双自由基自组装分子,通过给体-受体共面共轭策略和位阻保护设计,同步解决了钙钛矿太阳能电池中空穴传输层的导电性、稳定性与大面积加工均匀性难题。开壳层分子通过多重共振结构稳定,呈现分子内自由基离子对状态。展示了组装密度分布图,通过SECCM-TLCV空间映射显示RS-1与RS-2的组装密度更高且分布均匀,证明双自由

鼓励采用24%以上的光伏组件,云南省广南县启动865MW光伏项目竞配来源:广南县人民政府 发布时间:2025-11-11 11:19:31

11月10日,云南省文山州广南县发改局发布广南县坝庄、纳弄等11个光伏项目市场化配置优选公告。根据公告,本次优选分为两个标段,包括11个光伏项目,总装机容量86.5万千瓦。

低温焊料可能引发无主栅光伏组件性能的大幅衰减来源:建筑光伏与碳中和技术 发布时间:2025-11-07 14:26:16

梅耶博格的“SmartWire”是光伏组件无主栅互联的主流技术路线之一。有学者研究发现,SmartWire所使用的低温焊料与电池片栅线的连接可能存在缺陷,从而造成组件在高温天气下的性能异常衰减。资料/图:J.Hartleyet.al.研究团队由此指出,SmartWire技术中的低温焊料互联工艺存在不足,有可能导致组件在高温下的性能异常衰减;而IEC61215/61730标准中的序列测试,是针对串焊工艺设计的;对于SmartWire类型的组件,需要设计新的序列测试,才能更准确地模拟这类组件的长期耐候性。

前沿光伏技术之循环器:第三代太阳电池效率革命的 “隐形推手”来源:投稿 发布时间:2025-10-29 10:45:26

基于拓宽光谱响应的第三代太阳电池的诞生,正是为了突破这一困境。然而太阳电池属于交互系统,这意味着太阳电池吸收阳光的同时,必然会向太阳方向发射热辐射,造成不可避免的能量损失。在第三代太阳电池的应用场景中,引入循环器技术,将其特性得到了充分发挥。

武汉大学闵杰教授团队Joule综述:从非富勒烯受体分子设计到产业应用的有机光伏技术发展蓝图来源:知光谷 发布时间:2025-10-29 08:59:58

这种综合评估理念正在逐步获得学术界与产业界的广泛认同,为推动技术的实用化发展提供了重要指导。研究表明,非富勒烯受体材料的降解主要源于光氧化和分子异构化等机制。然而,近期的研究表明形貌演变更多地受动力学机制支配。

上海交通大学Nature重磅20.05%效率的㎡级钙钛矿组件:基质限域分子层用于钙钛矿光伏组件来源:知光谷 发布时间:2025-10-28 09:09:13

金属卤化物钙钛矿因其卓越的光电性能,已成为推动光伏效率进步的有力竞争者。本研究上海交通大学赵一新、陈悦天、郭永胜和缪炎峰等人提出了一种“SAM-in-matrix”策略,将部分SAM分散于稳定的三硼烷基质中,有效打破了原有分子堆叠导致的聚集现象。推动钙钛矿组件迈向平方米级产业化:成功制备出1米×2米大面积组件,认证效率突破20%,是目前公开报道中最大面积、最高效率的钙钛矿光伏组件之一,具备明确的产业化前景。

行业首家!正泰新能光伏检测中心获CNAS校准实验室资质来源:正泰新能 发布时间:2025-10-23 11:51:43

近日,中国合格评定国家认可委员会授予正泰新能光伏检测中心校准实验室认可资质,正泰新能光伏检测中心成为光伏行业首家获此资质的实验室。此前,正泰新能光伏检测中心已获得CNAS检测实验室认可资质,此次校准资质的加持,进一步体现了正泰新能对技术力的持续追求,也折射出公司在产品品控方面的高标准要求。为成功获得这一资质,正泰新能光伏检测中心进行了长达两年的精心准备。