索比光伏网讯:摘要:能源危机和环境污染问题日益严重,促使各国纷纷开发新型可再生能源。太阳能具有取之不尽用之不竭、清洁无污染、不受地域限制等优点,大力发展和推进太阳能光伏发电技术是解决当前能源和环境危机的有效手段。
关键词:微逆变器、建筑集成、光伏系统BIPV
能源危机和环境污染问题日益严重,促使各国纷纷开发新型可再生能源。太阳能具有取之不尽用之不竭、清洁无污染、不受地域限制等优点,大力发展和推进太阳能光伏发电技术是解决当前能源和环境危机的有效手段。
建筑集成光伏(BIPV)系统通过将光伏组件安装在建筑表面,实现太阳能光伏发电与建筑的完美结合,被认为是最先进、最具发展潜力的高科技绿色节能建筑。BIPV系统中光伏组件与建筑相结合,光伏组件不额外占用地面空间,特别适合于土地资源紧张的城市建筑;全球建筑物自身耗能约占世界总能耗的三分之一以上,采用BIPV技术,可以将建筑物从耗能型转变为功能型,将有效缓解城市反战与能源供应的巨大矛盾,创造低能耗、高舒适度的健康居住环境,实现城市建筑的可持续发展;另一方面,目前光伏组件的生产成本较高,太阳能光伏发电的成本远远高于常规能源,大大限制了光伏发电系统的发展和应用,采用BIPV系统,将光伏组件与建筑表面材料有机结合,可以大大降低光伏发电的成本,缩短投资回报周期。
BIPV系统中,光伏组件的安装首先涉及到光伏组件的安装角度和安装方向问题,安装角度就是光伏组件的倾角问题,倾角的选择直接关系到光伏组件的发电效率。同一块电池板,选择不同的安装角度接收到的辐射量是不一样的,由于各个墙面朝向的问题,不同安装位置的光伏组件其安装角度和方向不可能完全一致,这就决定了其发电效率、发电的瞬时功率无法保证完全一致。
BIPV系统中需要解决的另一个关键问题是阴影遮挡问题。产生阴影的原因是多种多样的,阴影的产生有随机的,也有系统的。阴影主要来自于周围建筑物、树木的遮挡、各个光伏组件之间的相互遮挡、云层等。光伏组件的输出特性决定了受到局部遮挡或阴影后,其发电效率将会大大减小,从而对整个系统的发电量产生显著影响。
为了使BIPV系统的发电效率最大化,除了在安装时尽量做好规划设计外,还需要采用合适的光伏发电系统结构。
图1为目前BIPV系统中常用的电气结构示意图。图1中,集中式系统首先根据设计的电压和功率等级,把大量光伏组件通过串联或并联等方式连接起来,然后经过一个集中式逆变器将光伏阵列输出的直流电能转换为交流电能;串式和多串式系统将多个光伏组件串联形成光伏组件串,每个串经过一个DC-DC变换器升压后,再经逆变器输出交流电能。上述三种系统中,均存在光伏组件的串联或并联,系统的最大功率点跟踪时针对整个串进行的,因此无法保证每个组件均运行在最大功率点,也无法获得每个光伏组件的状态信息;另一方面,由于建筑表面各个组件的安装方向和角度不同,各个组件的发电效率彼此各不相同,采用集中式的最大功率点跟踪,将大大降低系统的发电效率;当部分组件受到遮挡时,整个系统的发电效率更会严重降低,大大降低了系统的能量转换效率,甚至可能形成热斑,导致系统损坏。
图1