美国V3新旋转太阳能光伏电池 效率高出近20倍

来源:发布时间:2012-10-19 10:52:38

索比光伏网讯:近日,美国V3太阳能公司在传统技术基础之上,设计出一种比现有太阳能电池发电效率高出近20倍的新型太阳能光伏电池。

据了解,这种名为“旋转太阳能光伏电池”的新发明,虽然其发电单元依然是传统太阳能电池板,但与众不同的是,它有一个独特的锥形支架。

这种新型太阳能电池既有远高于传统平板太阳能电池的光电转化效率,又有令人着迷的外观

在使用时,支架会进行旋转,且无须任何用来追踪太阳移动轨迹的软件或硬件。更为重要的是,它的外形真的很酷。

这种新型太阳能电池既有远高于传统平板太阳能电池的光电转化效率,又有令人着迷的外观

到目前为止,几乎所有的太阳能电池组都由平板太阳能电池所组成。为了提高其发电效率,研究者一方面将太阳能电池板安装在可以追寻太阳移动轨迹的支架上,另一方面,则通过加装透镜或反射镜让更多的光线照射在太阳能电池板上。不过,这两种方法常常会导致电池板因被暴晒而温度过高,严重时,电池甚至会烧毁。

为了防止这种现象发生,V3太阳能公司的工程师们想了一个绝妙的方法他们将电池板安装在一个可以旋转的锥形支架上。

这样,每块电池板被照射的时间相对较短,温度不会上升至将其毁坏的程度,并且当锥形架转动时,未被阳光直射的电池板还可以自行冷却。而用于驱动锥形支架旋转的电力,则来自于附着其上的太阳能电池板。

业内专家认为,这种新型太阳能电池是集工程科技和艺术于一体的奇迹既有远高于传统平板太阳能电池的光电转化效率,又有令人着迷的外观。

不过,价格或许是该器件唯一的缺憾。虽然该公司没有透露具体的金额,但可以肯定,它会比传统太阳能电池板昂贵许多。所以,现在的问题是,其20倍的光电转化效率能否抵消其造价。

只有时间才能回答这个问题。不过在此之前毋庸置疑的是,许多人都会为这个像科幻电影中飞碟一样的太阳能电池所倾倒。

索比光伏网 https://news.solarbe.com/201210/19/245586.html

责任编辑:solarstar
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
AEM:冷升华‘准固态’添加剂助力有机太阳能电池效率超20%、寿命近500小时来源:知光谷 发布时间:2025-12-03 09:25:55

在Y系列有机太阳能电池中,调控活性层在干燥过程中的形貌对于同时实现高效率与高耐久性至关重要。这些结果确立了物理状态编程的ISR添加剂作为一条通用路径,可协同优化OSCs的效率与稳定性,并为可扩展、无残留的形貌控制提供了机理指导。同时大幅提升效率与稳定性:mDF通过优化结晶动力学、收紧π-π堆积、增大相干长度并编程有利的垂直相分离,将PM6:L8-BO器件效率提升至19.28%,并将高温光照下的运行稳定性大幅延长至477小时。

中科院AEL:双梯度IWO中间层解锁钙钛矿/硅叠层太阳能电池31.91%效率的新钥匙来源:知光谷 发布时间:2025-11-10 13:43:47

本研究针对钙钛矿/硅叠层太阳能电池的填充因子瓶颈,中国科学院新疆理化技术研究所刘家凯、中国科学院上海微系统所刘正新、刘文柱和张丽萍等人提出基于双梯度钨掺杂氧化铟中间层的创新方案。实验采用反应等离子体沉积技术,通过精确调控氧氩流量比,成功制备出具有梯度功函数的双IWO中间层。进一步优化IWO表面化学,增强了与MeO-4PACz空穴传输层的锚定作用,使钙钛矿层结晶质量显著提升,最终实现31.91%的认证效率。

西安交大代锦飞、吴朝新、董化团队最新NC研究:原位调控HTL界面实现高效率、可量产的钙钛矿太阳能电池来源:先进光伏 发布时间:2025-10-20 10:10:29

论文概览实现均匀稳定的空穴传输层对大面积钙钛矿太阳能电池至关重要。这一系列创新成果为钙钛矿太阳能电池的界面工程提供了全新解决方案。商业应用的可扩展性和工作稳定性本研究通过一体化2PACz-NiOxHTL技术成功实现了钙钛矿太阳能组件的大面积制备。该技术通过NiOx合成过程中的一步法原位锚定,显著提升了界面结合力、薄膜均匀性和电荷传输性能,为钙钛矿太阳能电池的大面积制备提供了理想解决方案。

新的双层钝化策略提高了钙钛矿硅叠层太阳能电池的效率和稳定性来源:钙钛矿材料和器件 发布时间:2025-10-15 13:45:25

实验结果证实,双层钝化策略能够精确调节钙钛矿的能级对齐,降低缺陷密度,并抑制界面非辐射复合。结合AlOx/PDAI2处理的整体钙钛矿/硅叠层太阳能电池实现了31.6%的光电转换效率,使用的是采用QCELLSQ.ANTUM技术制造的工业硅底电池。基于这一研究方法,研究人员提出了一种针对钙钛矿/硅叠层太阳能电池特定挑战的双层钝化策略。通过利用AlOx和PDAI2的互补优势,双层钝化策略同时解决了能量损失和稳定性的问题,在不影响离子传输动力学的前提下优化了界面特性。

近10GW!美国光伏电池制造现重大收购来源:PV光圈见闻 发布时间:2025-10-14 14:32:57

美国太阳能制造商T1Energy已收购本土太阳能电池生产商TalonPV的少数股权。T1Energy未披露其收购的具体股权比例及投资金额。扩大美国本土太阳能电池产量对保障能源安全、满足法规要求以及建设基于先进制造技术和尖端太阳能技术的美国太阳能产业至关重要。T1Energy与TalonPV已崛起为美国太阳能制造业的重要力量,正与ESFoundry、Suniva等企业共同引领本土太阳能电池生产浪潮。当前美国虽已建成约50GW光伏组件产能,但电池及上游关键部件的本土化进程远滞后于规划。

中国科研新突破!钙钛矿量子点太阳能电池效率达18.3%,创新技术破解表面缺陷难题来源:清洁能源视界 发布时间:2025-10-11 08:51:06

华北电力大学研究人员通过一项名为"碱增强反溶剂水解"的创新策略,将钙钛矿量子点太阳能电池的认证效率提升至18.3%,创造了该类电池的最高世界纪录。这项发表于《自然通讯》的研究,不仅刷新了效率数字,更攻克了长期困扰量子点太阳能电池发展的表面配体交换不充分的核心技术难题。这项创新不仅刷新了效率纪录,更重要的是开辟了钙钛矿量子点表面调控的新路径。

EES :厚度不敏感、效率超20%有机太阳能电池ZnO传输层新突破来源:知光谷 发布时间:2025-10-09 14:24:24

最终,基于此的有机太阳能电池在使用ZnO基ETL的器件中实现了20.1%的纪录效率,并具备优异的厚度容忍度和操作稳定性。实现传统结构OSC效率突破:刚性器件效率达20.1%,柔性器件达19.1%,均为ZnO基ETL器件的最高纪录。具备优异厚度容忍度与稳定性:ZnO-DIB器件在10–35nm厚度范围内效率波动5%,并在连续光照下保持超过80%的初始效率。

EES:厚度不敏感、效率超20%有机太阳能电池ZnO传输层新突破来源:知光谷 发布时间:2025-09-30 09:36:59

最终,基于此的有机太阳能电池在使用ZnO基ETL的器件中实现了20.1%的纪录效率,并具备优异的厚度容忍度和操作稳定性。实现传统结构OSC效率突破:刚性器件效率达20.1%,柔性器件达19.1%,均为ZnO基ETL器件的最高纪录。具备优异厚度容忍度与稳定性:ZnO-DIB器件在10–35nm厚度范围内效率波动5%,并在连续光照下保持超过80%的初始效率。

苏州大学李耀文、陈海阳团队JACS新突破:瞬态偶极子策略赋能高度定向自组装单层,有机太阳能电池效率逼近21%来源:先进光伏 发布时间:2025-09-15 09:13:00

相比之下,2PACz的SFG信号无明显变化,说明Th-Cz的瞬态共振结构促进了高度有序的分子排列。图5:器件性能与稳定性全面评估该图系统比较了不同空穴传输层有机太阳能电池的性能和稳定性。这些结果证实了瞬态偶极策略对不同活性层和基底的广泛适用性。基于该策略的OSCs实现了20.67%的认证效率,柔性器件效率达19.63%,均创下相应体系纪录。

19.10%!晶皓新能源30cm*30cm柔性钙钛矿太阳能电池效率新突破!来源:钙钛矿工厂 发布时间:2025-08-20 10:22:52

8月19日,晶皓新能源宣布其研发的30cm*30cm大尺寸超薄柔性钙钛矿太阳能电池,经中国计量科学研究院权威认证,光电转化效率达到19.10%,成功刷新该领域的纪录,成为全球柔性钙钛矿电池技术突破的重要里程碑。此次效率突破不仅彰显了晶皓新能源的技术硬实力,更为柔性钙钛矿太阳能电池的产业化应用注入强心剂。2025年5月,经中国计量科学研究院认证,晶皓新能源其研发的30cm*30cm大尺寸超薄柔性钙钛矿太阳能电池光电转化效率达18.06%。

港科大联同美国及瑞士顶尖学府提新猷 重塑钙钛矿太阳能电池的稳定性和可持续性来源:钙钛矿工厂 发布时间:2025-08-05 09:18:28

香港科技大学化学及生物工程学系的副教授、能源研究院副院长周圆圆教授及其研究团队最近提出了一种生物启发的综合多尺度设计策略,以应对钙钛矿太阳能电池商业化面临的关键挑战——长期运行的稳定性。钙钛矿太阳能电池因其低温、基于溶液的制造工艺而具备优势,能有效降低太阳能成本。这些降解过程发生在从皮米到厘米的不同尺度上,而多尺度结构因素对最终钙钛矿太阳能电池的稳定性和性能有着显着影响。