欧洲启动多国ERG科研计划 提高25%太阳能效率

来源:发布时间:2012-03-19 23:59:59
索比光伏网讯:一个由政府投资的欧洲多国/多学科研究专案──环保社会,绿色能源(Energy for a Green Society,ERG)——近日公布专案细节;这项为期三年的ENIAC联合投资专案旨在让太阳能产业链,无论是永续能源收集还是智慧电网都取得实质性发展,发展目标包括提高25%太阳能效率及降低20%功率转换损耗。

按照欧洲2020年气候计画和一般能源政策,太阳能发电需求将以倍数成长,这将为欧洲太阳能产业带来严峻的技术挑战。 ERG专案的目标是解决这些技术难题,提高太阳能电池的能效,开发创新的能源收集技术,降低功耗转换损耗,最佳化能源管理策略。

在专案最初阶段,欧洲研究人员的工作重点是利用新的架构、方法和材料研发创新的太阳能电池。专案目标之一是展示可印刷式染料敏化太阳电池(printable dye-sensitized solar cells)的商用可行性。染料敏化太阳电池是一种低成本的太阳能电池,可代替目前使用的半导体太阳能电池。

所有研发工作同步进行,专案合作方将寻求最佳化太阳能发电系统电力利用率的方法,以半导体矽电池面板的功率管理元件和集中式太阳能电池的微机电系统为研发重点。专案合作方将研发能够追踪最大功率点以提高太阳能板矩阵输出功率的技术以及提高模组和层压板​​功率转换效率的技术。

ERG专案还将研发单个智慧电网元件的行为模型,让电力公司能够开发最佳的电力调度和电池充电演算法,根据分布在整个电网内的无线感测器节点的输入资讯调度电力和充电。专案的另一个计画是研发创新的解决方案,利用即时电力计量和电费控制方法,最佳化智慧电网的功率管理和热电共生、耗电、总体能效。

ERG专案管理师、意法半导体(ST)主任工程师Francesco Gennaro表示:「ERG计画有助于欧洲建立一个强大的电子设计基地,为太阳能产业制订一系列技术标准,ERG的目标是大幅提高从太阳能板到智慧电网整个太阳能产业链的能效,让所有的合作方都获得能效改进技术。」

「环保社会,绿色能源」专案细分为若干个工作组,整个专案为期36个月。专案总预算为2570万欧元,欧盟和成员国政府根据ENIAC JU 2010规定提供部分研发资金。参与该专案的国家包括义大利、比利时、德国、西班牙、爱尔兰、荷兰、斯洛伐克共和国和英国。

索比光伏网 https://news.solarbe.com/201203/20/258561.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
分子桥接策略提高了钙钛矿太阳能电池的效率和稳定性来源:钙钛矿材料和器件 发布时间:2025-11-03 14:49:18

中国石油大学(华东)和青岛理工大学的研究人员报告了一种新的分子桥接策略,以解决钙钛矿太阳能电池中已知的挑战—钙钛矿吸收层和载流子提取层之间埋地界面的接触不良。通过引入氨基磺酸钾作为SnOETL和钙钛矿层之间的桥接分子,该团队在器件效率和稳定性方面都取得了提高。这项工作强调了埋地界面工程在提高PSC性能方面的重要性,并证明像HKNOS这样具有成本效益、结构简单的分子可以在效率和耐用性方面带来显着的提升。

WTe₂ 掺杂的混合钙钛矿提高了钙钛矿太阳能电池的效率和稳定性来源:钙钛矿材料和器件 发布时间:2025-10-28 14:01:17

世宗大学、檀国大学、香港城市大学、沙特国王大学、哈利法科技大学和东国大学首尔分校的研究人员通过设计与二维二硫化钨集成的混合FA-MA钙钛矿基体,开发了一种高效稳定的钙钛矿太阳能电池架构。优化后的WTe集成PSCs实现了令人印象深刻的22.86%的PCE,比原始钙钛矿器件提高了18%。这项研究强调了工程混合钙钛矿-TMDs架构突破下一代光伏性能界限的潜力,为高效耐用PSCs的可扩展室温制造铺平道路。

新的双层钝化策略提高了钙钛矿硅叠层太阳能电池的效率和稳定性来源:钙钛矿材料和器件 发布时间:2025-10-15 13:45:25

实验结果证实,双层钝化策略能够精确调节钙钛矿的能级对齐,降低缺陷密度,并抑制界面非辐射复合。结合AlOx/PDAI2处理的整体钙钛矿/硅叠层太阳能电池实现了31.6%的光电转换效率,使用的是采用QCELLSQ.ANTUM技术制造的工业硅底电池。基于这一研究方法,研究人员提出了一种针对钙钛矿/硅叠层太阳能电池特定挑战的双层钝化策略。通过利用AlOx和PDAI2的互补优势,双层钝化策略同时解决了能量损失和稳定性的问题,在不影响离子传输动力学的前提下优化了界面特性。

中国科研新突破!钙钛矿量子点太阳能电池效率达18.3%,创新技术破解表面缺陷难题来源:清洁能源视界 发布时间:2025-10-11 08:51:06

华北电力大学研究人员通过一项名为"碱增强反溶剂水解"的创新策略,将钙钛矿量子点太阳能电池的认证效率提升至18.3%,创造了该类电池的最高世界纪录。这项发表于《自然通讯》的研究,不仅刷新了效率数字,更攻克了长期困扰量子点太阳能电池发展的表面配体交换不充分的核心技术难题。这项创新不仅刷新了效率纪录,更重要的是开辟了钙钛矿量子点表面调控的新路径。

混合分子界面使倒置钙钛矿太阳能电池效率提高到26.64%来源:钙钛矿材料和器件 发布时间:2025-09-10 13:51:16

这种分子杂化桥接策略的实施使倒置钙钛矿太阳能电池实现了26.64%的功率转换效率,跻身该器件架构报告的最高效率之列。通过解决埋藏的钙钛矿/ITO接触的长期限制,该研究为钙钛矿太阳能电池的开发提供了重大进展,该电池将高效率与长期耐久性相结合,从而加速了其向实用光伏技术的潜在过渡。

First Graphene声称钙钛矿太阳能电池效率得到显着提高来源:钙钛矿材料和器件 发布时间:2025-09-09 14:48:31

澳大利亚石墨烯供应商FirstGraphene报告称,在钙钛矿太阳能电池中添加其功能化石墨烯产品后,效率提高了近两倍,生产成本降低了80%。FirstGraphene在一份公告中表示,通过添加其PureGraph产品,Halocell的PSC效率几乎翻了一番,达到30.6%,同时生产成本降低了80%。FirstGraphene去年年底签署了一项为期两年的协议,向总部位于WaggaWagga的Halocell提供PureGraph,用作其电池中的高性能涂层,声称此举为Halocell带来了市场优势。

电解掺杂提高了钙钛矿太阳能电池的效率和稳定性来源:钙钛矿材料和器件 发布时间:2025-09-08 14:51:49

阻碍钙钛矿太阳能电池的持续挑战之一在于其空穴传输层的制备方式。结果是双重好处—精确掺杂的有机半导体和消除破坏稳定性的移动锂离子。当集成到钙钛矿太阳能电池中时,其结果令人印象深刻。通过简化掺杂工艺,同时解决锂离子迁移问题,电解掺杂既能提供更高的性能,又能提供更高的可靠性。它代表着钙钛矿太阳能电池不仅在实验室中创下记录,而且足够实用和稳定,适合实际部署的重大进步。

南开大学陈永胜团队EES:中心核心不对称受体设计通过抑制非辐射能量损失和优化纳米形貌,使二元有机太阳能电池的效率提高20%以上来源:先进光伏 发布时间:2025-08-18 11:06:28

目前仅少数二元体系突破20%效率,且依赖复杂形貌调控。南开大学陈永胜团队设计核不对称受体Ph-2F,实现二元器件效率20.33%,创不对称受体世界纪录。该设计通过协同调控形貌与能损,为产业化提供高稳定性新路径。EQE光谱响应扩展至894nm,积分电流误差3%。动力学曲线拟合显示Ph-2F体系激子解离时间(τ)仅0.121ps,扩散时间(τ)缩短至5.161ps,空穴转移效率达98.71%,为高效率提供动力学基础。

众能光储史彦涛: 柔性钙钛矿太阳能电池预计今年将突破25%效率来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-07-30 14:19:01

众能光储董事长史彦涛教授为与会嘉宾带来了《柔性钙钛矿太阳能电池功能层微结构的构筑方法》主题演讲。历经十余年研究探索,众能光储团队持续刷新柔性钙钛矿电池效率世界纪录,柔性钙钛矿转换效率自2015年的15.65%提升至2024年的24%,预计今年将进一步突破25%。

新型纳米技术将太阳能电池效率提高 10% 以上来源:钙钛矿材料和器件 发布时间:2025-07-21 10:28:14

一种新技术使二氧化钛纳米棒能够以可调节的间距生长,从而在太阳能电池中实现更好的光捕获和功率转换。单晶TiO2纳米棒擅长收集光和传导电荷,使其成为太阳能电池、光催化剂和传感器的理想选择。当掺入低温加工的CuInS2太阳能电池中时,这些薄膜实现了超过10%的光电转换效率,峰值为10.44%。

天然来源添加剂提高了钙钛矿太阳能电池的效率和稳定性来源:钙钛矿材料和器件 发布时间:2025-07-21 10:23:44

蔚山国立科学技术研究所的YangChang-deok教授领导的研究团队最近通过添加一种源自樟树的物质制备了高质量的钙钛矿薄膜。由于没有残留材料,有望提高钙钛矿太阳能电池的使用寿命和效率,并通过简化工艺来降低制造成本。太阳能电池中使用的钙钛矿薄膜制备时,科学家们倾向于寻找大晶体尺寸和均匀排列,以允许电子平稳流动和坚固的结构。添加剂常用来制造这种高质量的薄膜,但如果成膜后仍有残留物,则会导致性能下降。