【太阳能电池的技术革命(3)】课题攻关确定方向,开发新材料实现超低成本

来源:发布时间:2011-12-26 23:59:59
索比光伏网讯:载流子的激发成为课题

        当然,利用强关联电子体系材料实现太阳能电池还面临着诸多课题。目前,理研十仓团队主要开展的是在数十K以下的极低温实验。MCG虽然已经得到确认,但还没有成功地在不加载外部电压的情况下利用1个光子使电极释放出多个电子。理研川崎表示:“还不到谈具体转换效率目标的阶段。”

        眼下最大的课题是开发载流子激发技术。因为强关联电子体系材料本身不具备分离电子与空穴的机理,所以需要相应的调整。另一方面,在半导体材料太阳能电池中,p-n结同时担负着生成和分离电子—空穴对的职责。

        因此,川崎等人为了使电子与空穴分离,决定部分采取半导体p-n结的机制。川崎且干劲十足地表示:“我们目前正在着手开发带结构。希望在1~2年内证明1个光子能够激发出2个以上的电子。”

能否实现几日元/W的太阳能电池 ?

        以开发使用强关联电子体系材料的太阳能电池为目标的不只是理研。冈山大学研究生院自然科学研究系尖端基础科学专业教授池田直的研究组正在着手研究利用在某种氧化铁中添加稀土类元素(R)的铁电体材料RFe2O4,开发制造时材料成本非常低的太阳能电池(图6)(注4)

图6:能否利用氧化铁实现低价格太阳能电池
上图表示了冈山大学池田研究室开发的属于氧化铁强关联电子体系材料“RFe2O4”的光电转换原理(a),和实际试制的太阳能电池单元(b)。设想采用卷对卷方式进行量产。单从材料费来看,甚至可以实现5日元/W极低的制造成本。


(注4)介电常数为5000~10万。材料没有正式名称,但已经注册了“绿色铁氧体”的商标。

        这种材料与理研开发的材料一样,是电子排列会在能量约为0.3eV的光线的激发下发生变化,使导电性大幅下降的强关联电子体系材料(注5)。池田于2005年使用加速器“SPring-8”发现,RFe2O4在室温下也具有这种性质。池田研发组从2008年起接受新能源产业技术综合开发机构(NEDO)的经费补助,最近又接受倍乐生控股的支援,正在致力于开发太阳能电池。

(注5)在RFe2O4之中,由Fe离子组成的三角形层状重叠。Fe离子中Fe2+和Fe3+混杂,其数量和配置随电子分布变化,因此能够形成各种能量状态。在“基底状态”下是绝缘体,但照射0.3eV以上的光线后会发生跃迁,成为金属性。

        已经试制出了若干种元件。这些元件的光吸收系数是公认较高的CIS类太阳能电池的好几倍,在中红外区域附近也相当高。作为太阳能电池的输出功率虽低,但也可以检测到。

        与理研一样,MCG虽然还在验证阶段,但池田表示:“与追逐超高效率相比,只要转换效率超过10%就足以令人满意,总而言之,我们希望开发出低成本的太阳能电池。”按照池田的计算,因为材料大部分是氧化铁,所以R使用钇(Y)时,材料费只需500日元/m2。而且设想是使用卷对卷和喷涂方法,以低成本进行批量生产(注6)

(注6)这种喷涂方法是指产业技术综合研究所明渡纯开发的“气溶胶沉积(AD)法”。(记者:河合 基伸、野泽 哲生、Phil Keys =硅谷支局)

索比光伏网 https://news.solarbe.com/201112/27/262100.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
东华大学AFM:蒸汽辅助无损封装策略实现高效空气处理钙钛矿太阳能电池的全生命周期调控来源:知光谷 发布时间:2025-12-10 09:47:36

本文东华大学王宏志和张青红等人开发了一种无损封装策略,以实现空气处理PSCs的全生命周期管理。本工作为空气处理PSCs的全生命周期管理提供了一条有前景的途径。

AEM:原位双区域选择性锚定两性离子凝胶实现高效且机械耐用的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-10 09:46:24

在室内光照条件下,VIPS修饰的柔性器件效率超过40%。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。

陈雨&彭强EES:介电分子桥实现效率26.60%、高反向击穿电压且稳定的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-01 15:55:01

本文成都理工大学陈雨和四川大学彭强等人提出了一种介电分子桥策略,采用双氯膦调控钙钛矿结晶、抑制离子迁移、调节界面能带排列并钝化非辐射复合。最优器件实现了26.60%的光电转换效率,最大瞬态反向击穿电压达-6.6V。介电性能显著增强:F-CPP处理使钙钛矿介电常数提升约两倍,器件瞬态反向击穿电压高达-6.6V,反向稳定性大幅提升。高效率与高稳定性兼具:器件效率达26.60%,并在多种应力测试下表现出优异的长期稳定性。

王开&马静&刘生忠AEL:带隙与晶体质量的协同提升实现高效稳定钙钛矿/硅叠层太阳能电池来源:知光谷 发布时间:2025-11-28 10:23:55

宽带隙钙钛矿材料对叠层太阳能电池至关重要,但富Br软晶格可能引发严重的离子聚集与迁移,显著损害器件效率与稳定性。由此,晶体质量提升的钙钛矿薄膜表现出更高的离子迁移能垒和增强的界面载流子提取能力。这些协同效应使单结钙钛矿太阳能电池效率高达23.24%,单片钙钛矿/硅叠层电池效率达30.16%,并在热、湿、光应力下展现出优异的稳定性。

南航赵晓明AEM:调控配体吸电子效应设计配体反应性以实现户外稳定的钙钛矿太阳能电池与组件来源:知光谷 发布时间:2025-11-27 13:47:25

2D/3D钙钛矿异质结构提升了钙钛矿太阳能电池的性能。本文南京航空航天大学赵晓明等人研究了芳香铵配体的吸电子强度对钙钛矿界面稳定性的影响。此外,组件在30天户外运行中保持稳定的功率输出,显示出其在实际应用中的潜力。研究亮点:配体吸电子能力调控界面稳定性:通过杂环中氧原子数量的增加,系统调控芳香铵配体的吸电子能力,最强吸电子配体ABDI有效抑制2D相形成并阻止离子互扩散。

李忠安&李楠AM:f-PSCs 效率25.11%!极性醚链段调控自组装单分子层实现高效且机械稳健的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-26 11:48:28

柔性钙钛矿太阳能电池是下一代便携式、可穿戴及建筑一体化光伏器件的理想候选者。这一双重功能促使EtOPACz在柔性基底上组装形成致密、均匀的分子层,从而增强界面附着力、改善钙钛矿薄膜质量并促进空穴提取。因此,采用EtOPACzSAM的f-PSCs实现了25.11%的卓越能量转换效率,为目前报道的f-PSCs中最高值之一。这些结果表明,极性醚链段工程为同时优化高性能f-PSCs的界面接触、电荷传输和机械耐久性提供了一条强有力的策略。

AEM:用于非富勒烯有机太阳能电池的两亲性聚合物共网络:调控分子堆叠实现高效下转换来源:知光谷 发布时间:2025-11-25 14:41:54

两亲性聚合物共网络由纳米尺度相分离的亲水和疏水域组成,近年来在被动光子学应用中引起关注。掠入射广角X射线散射表明,发光团的分子平面性和二面角通过范德华相互作用影响BHJ的堆叠,进而影响电荷传输。研究亮点:创新性引入APCNs作为多功能支架:利用其纳米相分离结构,成功将亲水性下转换发光团与疏水性PM6:Y6体异质结在空间上隔离,解决了材料不相容和能级不匹配问题。

AEM:混合学习实现自动化制备钙钛矿太阳能电池的重复性 >24% 效率来源:知光谷 发布时间:2025-11-25 14:33:54

实现高性能且具有良好重复性的钙钛矿太阳能电池仍然是一项重大挑战,因其本质上对制备过程波动和环境变化极为敏感。本研究为提高钙钛矿太阳能电池性能与重复性提供了实用策略,并为可扩展制造与材料加速开发奠定了基础。