利用逆变器优化光伏发电装置的实现

来源:发布时间:2011-09-07 23:59:59
索比光伏网讯:

  一、太阳能对逆变器的要求

  太阳是能量的天然来源。地球上每一个活着的生物之所以具有发挥作用的能力,甚至于是它的生存,都是由于直接或间接来自于太阳的能量。我们的地球处在离太阳差不多有一亿英里的地方。它所截取的辐射能少到难以置信 (大约千万分之三),这么小的一点能量, 实际上比整个世界目前现有的发电能力还大十万倍。目前全世界尤其是工业发达国家开始感到能量短缺,因此,人们开始求助于太阳能,以解决能源危机。太阳能每天都能无限供应,而且数量庞大。如果在大的电厂利用,就减少了温室效应,有些能源专家和环境保护的专家则认为,在满足人类今后能量需要方面,太阳能的热影响比任何其他替换品的热影响要小得多。作为一种不污染环境,又取之不尽的新能源,它无处不在。尤其是在电力供力方面,有专家认为太阳能发电最终将在电力供应中占20%.

  目前我国光伏发电系统主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载供电,如我国西北地区使用较多的太阳能户用照明系统以及远离电网的微波站供电系统均为直流系统。此类系统结构简单,成本低廉,但由于负载直流电压的不同(如12V、24V、48V等),很难实现系统的标准化和兼容性,特别是民用电力,由于大多为交流负载,以直流电力供电的光伏电源很难作为商品进入市场。光伏发电最终将实现并网运行,这就必须采用成熟的市场模式,今后交流光伏发电系统必将成为光伏发电的主流。

  太阳能逆变器是太阳能交流发电系统:电池板、充电控制器、逆变器和蓄电池共同组成,逆变器是一种电源转换装置,逆变器按激励方式可分为自激式振荡逆变和他激式振荡逆变。 太阳能交流发电系统是由阳能电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变。逆变器是一种电源转换装置,逆变器按激励方式可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照明负载频率、额定电压等相匹配的正弦交流电供系统终端用户使用。有了逆变器,就可使用直流蓄电池为电器提供交流电。因此,在太阳能应用中对逆变器必须满足以下基本要求:

  1.要求具有较高的效率。由于目前太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。

  2.要求具有较高的可靠性。目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器具有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热、过载保护等。

  3.要求直流输入电压有较宽的适应范围,由于太阳电池的端电压随负载和日照强度而变化,蓄电池虽然对太阳电池的电压具有重要作用,但由于蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是当蓄电池老化时其端电压的变化范围很大,如12V蓄电池,其端电压可在10V~16V之间变化,这就要求逆变器必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压的稳定。

  4.在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的要求,当中、大容量的光伏发电系统并网运行时,为避免与公共电网的电力污染,也要求逆变器输出正弦波电流。

  二、太阳能逆变器的原理及架构

  简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。我们处在一个"移动"的时代,移动办公,移动通讯,移动休闲和娱乐。在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能。国内技术较领先的品牌有英威腾、汇川、三 晶、紫日电气科技有限公司、雷诺尔、欧瑞(原烟台惠丰)、蓝海华腾。

  逆变器类型有他励逆变器、自励逆变器、脉宽调制(PWM)型逆变器。其中他励逆变器需要外部交流电压源,给晶闸管提供整流电压。他励逆变器主要应用在大功率并网情况下;对于功率低于1MW 的光伏发电系统,主要采用自励逆变器方式。自励逆变器不需要外部交流电压源,整流电压由逆变器的一部分储能元件(比如电容)来提供或者通过增加待关断整流阀(像MOSFET 或IGBT)的电阻值来实现。输出电压被脉冲调制的自励逆变器被称为脉冲逆变器。这种逆变器通过增加周期内脉冲的切换次数,来降低电压、电流的谐波含量;谐波含量与脉冲切换次数呈正比。目前,并网逆变器的输出控制模式主要有两种:电压型控制模式和电流型控制模式。电压型控制模式的原理是以输出电压作为受控量,系统输出和电网电压同频同相的电压信号,整个系统相当于一个内阻很小的受控电压源;电流型控制模式的原理则是以输出电感电流作为受控目标,系统输出和电网电压同频同相的电流信号,整个系统相当于一个内阻较大的受控电流源。

  目前,太阳能逆变器已有多种拓扑结构,最常见的是用于单相的半桥、全桥和Heric(Sunways专利)逆变器,以及用于三相的六脉冲桥和中点钳位(NPC)逆变器。太阳能逆变器的典型架构一般采用四个开关的全桥拓扑,如图1所示。

图1 全桥拓扑示意图

  在图1中, Q1 和Q3被指定为高压侧IGBT,Q2 和Q4 则是低压侧 IGBT.该逆变器用于在其目标市场的频率和电压条件下,产生单相位正弦电压波形。有些逆变器用于连接净计量效益电网的住宅安装,这就是其中一个目标应用市场,此项应用要求逆变器提供低谐波交流正弦电压,让力可注入电网中。

  实质上,为保持谐波分量低和功率损耗最小,逆变器的高压端IGBT采用脉宽调制(PWM),低压端IGBT则以60Hz频率变换电流方向。通过让高压端IGBT使用20kHz或20kHz以上的PWM频率和50/60Hz调制方案,输出电感L1和L2在实例中可以做得很小,并且照样能对谐波分量进行高效滤波。与快速和标准速度的平面器件相比,开关速度为20kHz的超快速沟道型IGBT可以提供最低的总导通损耗和开关功率损耗。同样,对于低压端开关电路,工作在60Hz的标准速度IGBT可以提供最低的功率损耗。

  这个设计中的开关技术具有如下优势:通过允许高压端和低压端IGBT独立优化实现很高的效率;高压端、同封装的软恢复二极管没有续流时间,从而消除了不必要的开关损耗;低压端IGBT的开关频率只有60Hz,因此导通损耗是这些IGBT的主要因素;没有交叉导通,因为任何时间点的开关都发生在对角的两个器件上(Q1和Q4或Q2和Q3);不存在总线直通的可能性,因为桥的同一边上的IGBT永远不可能以互补方式开关;跨接低压端IGBT的同封装、超快速、软恢复二极管经过优化可以使续流和反向恢复期间的损耗达到最小。

  三、IGBT抑或MOSFET

  IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似。也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。

  在太阳能转换过程中,有各种先进的功率器件可以使用,比如MOSFET、双极结晶体管(BJT)和IGBT.为取得最佳的转换效率和性能,为太阳能逆变器选择正确的功率晶体管极具挑战性,而且非常耗时。

  金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管(metal-Oxide-Semiconductor Field-Effect transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。MOSFET依照其"通道"的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。MOSFET里的氧化层位于其通道上方,依照其操作电压的不同,这层氧化物的厚度仅有数十至数百埃(Å)不等,通常材料是二氧化硅(silicon dioxide, SiO2),不过有些新的进阶制程已经可以使用如氮氧化硅(silicon oxynitride, SiON)做为氧化层之用。

  多年来的研究表明,IGBT可以比其它功率器件提供更多的优势,其中包括更强的电流处理能力、用电压(而不是电流)方便地实现栅极控制,以及在封装内集成超快速恢复二极管实现更快的关断时间。 IGBT是一种少数载流子器件,它的关断时间取决于少数载流子重新组合的速度,因此,随着最近工艺技术和器件结构的改进,它的开关特性已得到显着增强。

  IGBT基本上是具备金属门氧化物门结构的双极型晶体管 (BJT) .这种设计让IGBT的栅极可以像MOSFET一样,以电压代替电流来控制开关。作为一种BJT,IGBT的电流处理能力比MOSFET更高。同时,IGBT亦如BJT一样是一种少数载体元件。这意味着IGBT关闭的速度是由少数载体复合的速度快慢来决定。此外,IGBT的关闭时间与它的集极-射极饱和电压 (Vce(on)) 成反比(如图2所示)。


图2 关闭时间与Vce(on)成反比

  以图2为例,若IGBT拥有相同的体积和技术,一个超速IGBT比一个标准速度的IGBT拥有更高的Vce(on)。然而,超速IGBT的关闭速度却比标准IGBT快得多。图2反映的这种关系,是通过控制IGBT的少数载体复合率的使用周期以影响关闭时间来实现的。

  一般说,因IGBT的电流更大(是MOSFET的两倍多),所以采用IGBT方案的成本比采用MOSFET的成本低。除成本方面的考虑外,器件性能可由功率损耗表度,而功率损耗可分为:导通和开关两类。作为以少数载流子为基础的器件,在大电流下,IGBT具有更低的导通电压,也就意味着更低的导通损耗。但MOSFET的开关速度更快,所以开关损耗比IGBT低。因此对于要求更低开关频率且更大电流的应用来说,选择IGBT更为适合而且具备更低成本优势。另一方面,MOSFET有能力满足高频、小电流应用,特别是那些开关频率在100kHz以上的能量逆变器模块的需要。虽然从器件成本角度看,MOSFET比IGBT贵,但其处理更高开关频率的能力将简化输出滤波器的磁设计并将显着缩小输出电感体积。

  基于上述原因,更多的制造商因此倾向于在中高水平的能量逆变器中采用IGBT.而据Microsemi公司介绍,该公司生产的MOS8 IGBT在静态和动态测试(最小化的总体功率损耗)方面的优化性能可出色胜任这些应用的要求。另一方面,即便MOSFET的成本是个主要考量,但为实行一个更优方案,也应重新审视采用MOSFET的潜力,诸如Microsemi的MOS7/MOS8 MOSFET所具备的领先特性就非常适合太阳能逆变器的设计。

  四、太阳能逆变器的智能控制

  设计太阳能逆变器时要考虑的两个关键因素是效率和谐波失真。效率可分成两个部分:太阳能的效率和逆变器的效率。逆变器的效率在很大程度上取决于设计使用的外部元件,而不是控制器;而太阳能的效率与控制器如何控制太阳能电池板阵列有关。每个太阳能电池板阵列的最大工作功率在很大程度上取决于阵列的温度和光照。MCU必须控制太阳能电池板阵列的输出负载,以使阵列的工作功率最大。由于这不是一个数学密集型算法,因此可使用低成本MCU来完成任务。

  目前,大多数太阳能逆变器只能从太阳能电池板的某个最佳位置对电池板的整体效率进行优化。这种优化方法严重制约了太阳能发电系统的效率。如果光伏系统在非最佳电压及电流水平下运行,系统的效率就非常低,白白浪费采集太阳能的良机。在光伏系统中,太阳能电池板是由多个串联组并联后形成的。就像节日灯饰一样,假如串联中的任何某个电池发生故障,就会导致整个电池组失效。此外,当有局部阴影或碎砾等遮蔽光伏系统时,这种情况也会发生。

  为了解决上述问题,目前太阳能电池板都集成了旁路二极管,从而使电流可以绕过被遮蔽的失效电池板部份。启动二极管后,它们可将电流重新路由,即改道绕过失效电池串上。这样一来,不仅浪费了受遮蔽电池板的供电潜能,而且会降低整个电池组的总电压。基于选取电池板最佳操作点的原则,逆变器必须决定是应该优化受影响电池串的电压,还是应该优化其他没受影响电池组所产生的能量。在大多数的情况下,逆变器都会选择优化没有影响的电池组,并相应地降低受影响电池组所产生的能量,甚至是完全关闭受影响电池组。所导致的结果是,太阳能光伏系统只要出现10%的遮蔽,便会使太阳能发电量下降一半。产生这一现象的原因主要是现行的光伏系统并不能与极度敏感的太阳能电池架构相匹配。因此,我们需要采用更高智能的技术和产品来开发太阳能。

  为此,美国国家半导体新推出的Solar Magic产品,能够智能管理太阳能光伏(PV)电池板电量,从而使太阳能管理更智能,更高效。一个解决方案就是所谓的"微型逆变器",即在每块电池板上都加装逆变器。可是,影响光伏系统的关键因素是可靠性、成本和效率。先进的微型优化器技术可大幅改善太阳能发电工业的成本效益和产能。由于具备在太阳能发电的深厚知识、经验以及可靠的核心技术,美国国家半导体的Solar Magic技术可监察并优化每块电池板的发电量,并改善电池板中的电流流向。Solar Magic体现了美国国家半导体在混合信号和电源管理的先进算法领域的领先。通过采用Solar Magic技术,太阳能发电系统可挽回50%以上因输电失配或阴影遮蔽而损失的发电量。微型优化器将智能地管理每块电池板,让它们可以最佳的功率点去运行,即使串联电池组内有个别电池板发生故障也不会影响系统的整体效率。美国国家半导体于2009年推出的全新微型优化器将推动太阳能光伏技术的发展,在再生能源方面扮演举足轻重的角色。

索比光伏网 https://news.solarbe.com/201109/08/267607.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
复旦大学解凤贤AFM突破溶解度限制:利用温度调控有机配位机制实现高质量钙钛矿单晶的普适性生长及其X射线探测应用来源:知光谷 发布时间:2025-10-09 15:42:14

溶解度是调控钙钛矿单晶生长的关键物理性质。逆温结晶法因其可利用升温过程中溶解度下降的特性,被广泛用于制备高质量钙钛矿单晶,以构建高性能X射线探测器。本文复旦大学解凤贤等人提出一种温度调控有机配位机制,以突破多种钙钛矿组分在ITC过程中的溶剂限制。本研究为高质量钙钛矿单晶的合成提供了新机制,并推动了其进一步应用。

AFM:氧辅助化学反应实现高效CsPbI₃钙钛矿太阳能电池的埋底界面优化来源:知光谷 发布时间:2025-09-01 11:32:35

CsPbI钙钛矿太阳能电池因其优异的热稳定性和光电性能,在单结和叠层电池中备受关注。研究发现,CHEA在退火过程中发生氧辅助氧化反应及后续分子间缩合,形成C=O和N-H等多种官能团,在空穴传输层PEDOT:PSS与钙钛矿之间构建了坚固的化学桥。这不仅优化了PEDOT:PSS的结构与电子性能,还促进了上层CsPbI钙钛矿薄膜的快速低缺陷生长,显著缓解了环境湿度的不利影响。最终,反式CsPbIPSCs效率显著提升至21.19%,并在运行600小时后仍保持98%的初始效率,稳定性显著增强。

AFM:利用两亲性分子优化结晶、缺陷与韧性实现高性能刚性与柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-08-21 10:27:10

尽管柔性钙钛矿太阳能电池具有广阔的应用前景,但其较差的结晶性和机械强度导致的低转换效率和不稳定性仍是商业化面临的主要挑战。本研究选用一种两亲性分子——1-双胍盐酸盐,将其引入钙钛矿前驱体中,实现结晶调控、缺陷钝化和界面增韧三重功能。该分子可与钙钛矿组分形成中间相延缓结晶,同时通过正负电基团钝化多种缺陷,获得高质量晶体。此外,BtFBG-HCl在SnO与钙钛矿层之间形成强界面桥接,增强器件结构稳定性。

三成亏损收窄、二成盈利,超半数光伏企业回暖!来源:索比光伏网 发布时间:2025-07-15 17:05:24

近日,共有29家光伏企业发布了2025年半年度业绩预告,其中,8家企业实现盈利,占比达到27.59%;10家企业亏损收窄,占比达到34.48%;5家企业由盈转亏,占比为17.24%;6家企业亏损扩大,占比为20.69%。盈利:辅材龙头

需求大变!中能建、国能、华能、三峡、国电投、中电建、华电、华润,八大电力央企上半年支架招标背后来源:索比光伏网 发布时间:2025-07-15 17:02:23

自136号文落地以来,新能源全面进入电力市场化交易,给光伏行业发展带来了深刻的影响。电力央企对光伏电站的投资测算调整作为当下新能源投资的主力军,国能、三峡、华能、大唐、国家电投等头部电力央企,针对新能源

中来的底线:质量,没有妥协项来源:索比光伏网 发布时间:2025-07-14 17:34:59

“低价换市场”,正将光伏行业拖入深渊。冰冷的第三方检测数据揭示残酷现实:某央企电站中,低价组件的实际衰减率远超技术协议标准,组件质量隐患丛生。价格战阴影下,性能失守正在透支行业的未来信用。7月3日,工信

竞争加剧盈利承压,钧达股份2025H1预亏2-3亿元来源:索比光伏网 发布时间:2025-07-14 16:34:00

7月14日,钧达股份(SZ:002865)发布2025年半年度业绩预告,公司预计实现归母净利润为亏损2-3亿元,去年同期为亏损1.66亿元;预计实现归母扣非净利润4-5亿元,去年同期为亏损3.90亿元;预计实现基本每股收益为亏损0.

FR-WIST系列交换机通过双电网认证,助力变电站通信升级来源:光路科技 发布时间:2025-07-11 17:26:30

​随着新型电力系统加快建设,变电站作为电力输配系统的重要枢纽,其智能化、数字化水平正不断提升。在这一过程中,稳定、高效的通信系统成为支撑变电站自动化运行的关键基础设施。其中,具备强抗干扰能力、高可靠性及适应极端工业环境能力的工业以太网交换机,已逐渐取代传统通信设备,成为站内通信网络的核心组成部分。

海南“136号文”:机制电价竞价上限0.4298元/千瓦时,增量陆上风光项目执行12年!(征求意见)来源:光伏头条 发布时间:2025-07-11 11:49:43

光伏头条获悉,7月10日,海南省发展和改革委员会就《关于海南省深化新能源上网电价市场化改革的实施方案(征求意见稿)》公开征求意见。

6月政策速览 | 省级分布式光伏管理新政加速出台,支持新模式、新业态创新发展来源:正泰安能 发布时间:2025-07-11 10:24:45

6月4日,国家能源局印发《关于组织开展新型电力系统建设第一批试点工作的通知》,提出聚焦新型电力系统有关前沿方向,依托典型项目开展单一方向试点,依托典型城市开展多方向综合试点,探索新型电力系统建设新技术、新模式,推动新型电力系统建设取得突破。坚持重点突破,先期围绕构网型技术、系统友好型新能源电站、智能微电网、算力与电力协同、虚拟电厂、大规模高比例新能源外送、新一代煤电等七个方向开展试点工作。

中能创泰国光伏展载誉归来!轻刚组件凭 “轻、薄、曲面适配” 圈粉全球客户来源:中能创光电科技 发布时间:2025-07-11 09:50:26

7 月 2—4 日的泰国曼谷国际光伏展(Solar Energy Thailand)圆满落幕。中能创携核心产品 ——轻刚组件精彩亮相,在高可靠高安全的前提下,轻刚组件凭借 “轻、薄、可适配曲面屋顶” 三大核心优势成为现场焦点,成功打响品牌在东南亚市场的知名度。