吉世科开始销售具有高度蒸气阻隔性的薄型透明柔性薄膜

来源:Solarbe.com发布时间:2011-01-26 09:51:20

  日本的电子材料专业贸易公司吉世科(KISCO)宣布,将与从事材料开发的新加坡风险企业Tera-Barrier Films Pte. Ltd.(简称TBF)展开业务合作,开始销售由TBF开发的透明柔性薄膜。通过此次业务合作,吉世科除了将对开发产品的市场营销活动出资之外,还将获得在亚洲的总代理商权限。据介绍,通过将该薄膜作为基板使用,可实现又轻又薄并可弯曲的有机EL显示器、电子纸、有机EL照明及太阳能电池等。

  TBF开发的透明柔性薄膜采用由无机层和分散有纳米粒子的有机层构成的层状构造。纳米粒子承担与水分子反应,将水分子密闭在薄膜内部的功能,以及填补无机层产生的裂缝的功能。而纳米粒子的成分及添加量,吉世科表示“还不便公开”。

  据吉世科介绍,基于上述构造,通过无机层和有机层各层叠两层的厚数μm的薄膜,可在气温60℃、湿度90%的条件下实现每天仅10-6g/m2的水蒸气透过性。而其他公司的普通透明柔性薄膜不同,“水分容易从无机层产生的裂缝侵入内部,因此无机层和有机层各层叠3~4层”(吉世科)。

  另外,吉世科和TBF还公布了利用基于开发产品的有机EL元件进行试验的结果。首先试制12mm见方的试验单元,确认了亮度随时间发生的变化,表明600小时后亮度保持在初期的88%。而且,将50mm见方的试验单元以半径25mm弯曲1万次后,亮度也未见变化。另外,包括透明电极ITO在内的透射率在可视光范围内(400nm~800nm)达到85%以上。

  TBF开发出了以卷对卷工艺制造开发产品的技术。基于该技术“可在1分钟内成膜300m”(TBF)。将委托美国和德国的厂商来制造,开始以月产300m2的规模供货。今后TBF计划在新加坡设立自己的试产线,在2012年1月之前将产量提高至每月5万m2。另外,TBF还打算在2013年设立量产线,使产生规模达到250万m2。

  TBF是2009年6月从新加坡科学技术开发厅下属的材料工程研究所Institute of Materials Research and Engineering(IMRE)中独立出来成立的风险企业。此前2009年3月上述透明柔性薄膜还在IMRE进行开发时,吉世科曾在日本国内展会展示过相关技术。(记者:佐伯 真也)

 

索比光伏网 https://news.solarbe.com/201101/26/15803.html

责任编辑:solarbe太阳能网资讯中心
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

双激光真空工艺可生产高质量的CsPbBr₃钙钛矿薄膜,用于制备高效的绿色发光二极管来源:钙钛矿材料和器件 发布时间:2025-11-11 14:12:35

CsPbBr等卤化物钙钛矿因其高颜色纯度、缺陷容忍性和可调带隙而成为下一代光电器件的有前途的材料。在超高真空下,使用紫外Nd:YAG激光器将通过逆温结晶合成的单晶CsPbBr靶材烧蚀到蓝宝石衬底上。在光学上,CsPbBr薄膜表现出2.36eV的直接带隙和以524nm为中心的强烈绿色发射。该工艺还有效抑制了缺乏Cs的杂质相的形成,这些杂质相通常会限制发光效率。该研究展示了一种在真空下构建高纯度卤化物钙钛矿异质结构的可控方法。

蒸气辅助表面处理用于高度稳定的全印刷碳电极钙钛矿太阳能电池组件来源:钙钛矿材料和器件 发布时间:2025-11-05 14:03:08

钙钛矿太阳能组件的运行稳定性低于小尺寸器件,这对推动其实际应用构成了关键挑战。我们展示了活性面积约50cm的全印刷碳电极PSMs,PCE达到20.41%。此外,钙钛矿中的卤素存在可能导致贵金属电极在运行过程中被电离,加速器件的降解。传统的基于溶液的后处理通常会引入可能损害钙钛矿并阻碍大规模生产的溶剂。我们展示了一种可扩展的蒸汽后处理策略,使高度稳定且高效的全印刷C-PSMs成为可能。

NMP/DMF和DMSO/DMF溶剂体系中用于大面积太阳能组件的真空辅助钙钛矿薄膜晶化来源:钙钛矿材料和器件 发布时间:2025-10-24 14:37:59

杭州电子科技大学,杭州众能光电科技有限公司,杭州职业技术学院和杭州科能新能源有限公司的科学家们系统比较了两种常见的钙钛矿前驱体混合溶剂体系—NMP/DMF和DMSO/DMF,旨在研究它们的配位特性如何影响真空辅助钙钛矿结晶过程中薄膜的形成结果。基于NMP/DMF和DMSO/DMF溶剂体系的钙钛矿薄膜形成示意图。基于这些机制,使用NMP/DMF体系制备的钙钛矿薄膜表现出优异的光电性能。

郑州大学AFM:基于降冰片二烯的固态光热薄膜用于高效太阳能存储来源:知光谷 发布时间:2025-10-20 10:02:32

本研究郑州大学宋东兴、王珂等人开发了一种基于降冰片二烯分子的固态光热储能薄膜,通过光异构化反应将太阳能转化为化学能,并在加热时以热能形式释放。其中,NBD4薄膜表现出最高的储能密度,达到202Jg。将该固态光热储能薄膜与光伏电池集成后,可吸收紫外光,降低光伏电池温度约5°C,并将紫外光子储存为化学能,系统整体效率提升约3%。

苏州大学张晓宏/黄河/薛琪最新Matter:水合诱导的层状双钙钛矿形貌与电学调控及其 p 型透明导体应用来源:知光谷 发布时间:2025-10-13 13:45:07

理论研究曾预测Cs4ZnBi2Cl12等层状双钙钛矿具备成为p型透明导体的潜力,但始终缺乏实验证据支持。该工作报道了层状双钙钛矿Cs4ZnBi2Cl12在p型透明导体方向的实验突破。创新点:1.水合诱导的形貌调控—提出利用水合处理实现层状双钙钛矿纳米晶由球形向纳米棒的可控转变。水合诱导的晶格调控策略有望推广至更广泛的无铅钙钛矿体系,拓展其在透明电子学、光伏及光电探测等领域的应用。

AEL:准二维钙钛矿发光薄膜的多价工程用于实现相位纯蓝光钙钛矿发光二极管来源:知光谷 发布时间:2025-10-13 11:37:57

实现高量子效率与光谱稳定性的蓝光钙钛矿发光仍具挑战。本文韩国庆熙大学JaeWoongJung等人提出一种使用硫脲作为添加剂的多价调控策略,制备出相位纯净的准二维钙钛矿薄膜。最终,含硫脲的准二维钙钛矿发光体在466nm处实现纯蓝光发射,半高宽仅16nm,对应CIE色坐标,覆盖约99%Rec.2100蓝光原色标准。本研究展示了多价分子工程在推动高性能、色纯蓝光PeLEDs方面的潜力。

青岛大学&北京师范大学薄志山最新NC:高效钙钛矿/有机叠层太阳电池中薄膜演化与复合损失调控取得突破进展!来源:先进光伏 发布时间:2025-10-10 13:51:37

论文概览钙钛矿/有机叠层太阳能电池是突破单结器件效率极限的重要技术路径,然而其性能长期受限于有机子电池中的复合损失。推动叠层效率突破:将钙钛矿/有机叠层电池效率提升至26.42%,跻身国际领先水平。结论展望本研究通过系统揭示给体含量对有机薄膜生长动力学、结晶特性与复合损失的调控机制,成功将钙钛矿/有机叠层太阳能电池的效率提升至26.42%,实现了对该体系复合损失的有效抑制与性能优化。

AEL:通过咪唑络合中间体实现锡钙钛矿薄膜的基底无关且无需反溶剂的制备方法来源:知光谷 发布时间:2025-09-22 16:06:16

金属卤化物钙钛矿薄膜的制备目前严重依赖反溶剂的使用。本研究提出了一种真空淬火结合晶体生长调节剂的方法,该方法无需反溶剂和二甲基亚砜,通过形成含非晶态络合物的中间膜,实现了对锡钙钛矿晶体生长的调控。大面积制备与模块化应用:实现了最大7.5×7.5cm的均匀锡钙钛矿薄膜制备,并成功构建了活性面积为21.6cm的七电池模块,展示了其良好的可扩展性与产业化潜力。

Chemical Engineering Journal: 新型柔性聚电解质杂化介电薄膜制备多级非易失性低电压柔性OFET存储器来源:先进光伏 发布时间:2025-09-22 14:33:46

尹志刚教授等人近期开发出氯化锌掺杂新型柔性聚电解质杂化介电薄膜材料,并用于设计和制造多级非易失性低电压柔性有机场效应晶体管存储器。这一创新研究成果,展示了新型柔性聚电解质杂化介电材料及其低功耗OFET存储器在信息感知、存储与计算领域的诱人应用潜力。通过调节栅极电压,成功调控新型聚电解质杂化介电薄膜中的离子迁移能力,从而赋予柔性OFET存储器出色的存储能力。

Science Advances:无掩膜光刻法制备纳米柔性TFT来源:先进光伏 发布时间:2025-09-22 14:30:12

考虑到移动或可穿戴系统对低压设备操作和超低功耗的严格要求,小截止状态漏电流和小亚阈值摆动至关重要。在玻璃基板上制造的n沟道ActivInkN1100TFT的传输和输出特性除p沟道TFT外,还使用PolyeraActivInkN1100作为半导体制造n沟道有机TFT。结论展望本文报道的纳米级TFT和反相器是使用电子束光刻技术制造的。虽然电子束光刻的主要缺点是其低吞吐量,但这并不排除使用电子束光刻在更大规模上制造有机TFT和电路的潜力。