伦敦大学学院、国立中兴大学、伦敦玛丽女王大学、华盛顿大学和伦敦南岸大学的研究人员发现,硫氰酸胍是一种离液剂(离散剂),可以减缓和控制钙钛矿晶体在制造过程中的形成方式,从而形成更光滑、更均匀的层。这有助于减少材料中可能影响性能并缩短太阳能电池寿命的缺陷。胍添加剂的使用使研究人员能够更好地控制晶体生长,限制材料形成过快时出现的缺陷。
在光伏产业追求极致效率的道路上,BC电池因其正面无栅线、100%受光的特性,一直被行业公认为单结晶硅技术路线的终极形态。然而,自1975年首次被提出以来,BC技术因制造难度极高、成本居高不下,长期停留在实验室阶段,未能实现规模化应用。直到近年来,爱旭通过全球独创的“分置法”结合激光图形化技术,成功推动BC技术迈入大规模量产时代,一举扭转了行业对BC电池“效率高但难量产”的刻板认知。
基于金纳米棒的光泵浦钙钛矿垂直腔面激光器01成果简介激光器作为一种重要的光源,广泛应用于通信、医疗、显示技术和科学研究等多个领域。自2014年首次实现卤化物钙钛矿的光泵浦激光以来,研究人员已经利用多种外部微腔结构成功构建钙钛矿激光器,例如分布式反馈激光器和垂直腔面发射激光器。针对上述问题,北京工业大学关宝璐、黄帅团队研制了基于金纳米棒的钙钛矿垂直腔面激光器。
一个亮点来自密歇根大学的千禧太阳能汽车,目前在挑战者组中排名第五。Millennium采用MitoSolar使用牛津光伏公司的高性能钙钛矿叠层太阳能电池建造的定制甲板。牛津光伏公司在其公告中表示,它很高兴支持下一代工程师,因为他们展示了大胆的抱负与开创性的科学相结合的可能性,变的一切皆有可能。牛津光伏的硅基钙钛矿叠层技术有望提供比标准硅电池高20%以上的效率,目前正在迈出商业化的第一步。
微米级厚度的Sn-Pb层对最大化吸收至关重要,但高浓度前驱体溶液常导致不均匀结晶、化学计量失衡和载流子扩散长度受限。性能全面提升:实现微米级厚度Sn-Pb薄膜载流子扩散长度达11μm,单结效率24.2%,叠层效率29.3%,稳定性提升4倍。
本文大连理工大学贺高红和姜晓滨等人提出了一种基于多级微流控的外延生长策略,实现了对CsPbBrNCs结构参数和核壳构型的精确多级控制。通过利用微通道内的准一维热流场,成功解耦了CsPbBr的成核与生长过程。进一步在CsPbBr上外延生长无铅CsSnBr双钙钛矿壳层,形成I型能带对齐的核壳异质结构。所得核壳纳米晶表现出显著增强的光学性能和稳定性,在环境暴露75天后仍保持完整的晶格结构。
CsPbI钙钛矿太阳能电池因其优异的热稳定性和光电性能,在单结和叠层电池中备受关注。研究发现,CHEA在退火过程中发生氧辅助氧化反应及后续分子间缩合,形成C=O和N-H等多种官能团,在空穴传输层PEDOT:PSS与钙钛矿之间构建了坚固的化学桥。这不仅优化了PEDOT:PSS的结构与电子性能,还促进了上层CsPbI钙钛矿薄膜的快速低缺陷生长,显著缓解了环境湿度的不利影响。最终,反式CsPbIPSCs效率显著提升至21.19%,并在运行600小时后仍保持98%的初始效率,稳定性显著增强。
钙钛矿太阳能电池因严重的非辐射复合导致光电压损失,限制了器件整体性能。为解决这一关键问题,华东师范大学保秦烨等人开发了一种通过双位点锚定桥的策略,用于调控钙钛矿与PCBM电子传输层之间的异质界面。通过形成强双位点P—O—Pb共价键,实现强化且均匀的钝化,有效降低了钙钛矿表面缺陷密度。同时,重构了钙钛矿表面能带结构,使费米能级上移并增强电场,促进钙钛矿/PCBM界面的电子提取。
钙钛矿太阳能电池中,埋底界面普遍存在缺陷富集问题,而功能分子钝化策略能够显著提升器件性能。中国人民大学慕成、福建农林大学林智超等人针对电子传输层/钙钛矿层界面修饰问题,系统研究了三种含不同吸电子基团的功能分子:三氟乙酸钠、三氟甲基亚磺酸钠和三氟甲基磺酸钠。文章亮点:1.揭示双重锚定钝化新机制:首次证实含双官能团的钝化分子在能量上具有显著倾向性——可与SnO2电子传输层表面形成稳定双锚定结构。
宽带隙钙钛矿太阳能电池可突破叠层电池的Shockley-Queisser极限,但其在连续光照下易发生相分离,限制稳定性。受硅电池光致再生机制启发,我们开发了光均化辅助相分离缓解技术,结合光照与表面钝化,显著抑制卤化物相分离。PHASET处理的1.79eV宽带隙电池效率达20.23%,连续光照1200小时后仍保持97%初始效率;与1.25eV窄带隙子电池集成的全钙钛矿叠层电池效率达28.64%,运行1200小时后保留77%性能。



