科学家最新发现,采用1,3-二氨基丙烷二氢碘化物均匀涂覆钙钛矿层表面,可将钙钛矿硅叠层电池的转换效率提升至33.1%,并延长器件的户外长期稳定性。然而,在这种大型金字塔绒面上制备钙钛矿叠层需克服一系列困难,因此吸引了众多研究团队参与攻关。此次的钙钛矿表面钝化方案,是该领域的最新突破。该研究团队还发现,钙钛矿表面钝化可提升整个钙钛矿层的电导率,进而提高叠层电池的填充因子。
然而,锡基钙钛矿存在显著缺陷,其快速结晶和氧化的特性严重限制了稳定性和载流子迁移率。纯3D锡基钙钛矿晶体管因Sn易氧化和晶体生长动力学不可控,载流子迁移率较低且长期稳定性较差。这项研究为开发具有优异稳定性的高性能钙钛矿TFT铺平了道路。TEAI-CsFASnI3和TEASCN-CsFASnI3TFTs循环转移曲线测量期间的阈值电压和导通电流的变化。结论展望将TEASCN掺入CsFASnI3中制备高迁移率和稳定的锡基钙钛矿TFT。
通过减少载流子传输损失、提高选择性和抑制非辐射复合,可显著提升钙钛矿/硅叠层太阳能电池的效率和稳定性。同时,这种场效应钝化提高了整个本征钙钛矿吸收层中的电子浓度,增强了导电性并减少了传输损失。最终,我们实现了高性能全绒面钙钛矿/硅叠层太阳能电池,在1-sunAML5G条件下实现了33.1%的转换效率,开路电压达2.01伏,并在红海沿岸表现出优异的户外稳定性。
文章亮点总结1.首次将固体添加剂引入SS工艺制备OPV,为该工艺优化提供了新思路。图1.固体添加剂的性质。该研究成功开发了一种芳香族添加剂辅助的自发扩散工艺,通过调控溶液表面张力和成膜动力学,能够显著提升活性层薄膜的均匀性和OPV器件性能。研究成果以“SolidAdditivesforSpontaneouslySpreading-ProcessedOrganicPhotovoltaics”为题,发表于《AdvancedScience》上。至今已在Nat.Photonics、JACS、Joule、ScienceAdvances等期刊上发表论文30余篇。2024年9月,西湖光电正式对外提供大面积OPV制样服务。
论文概览针对钙钛矿太阳能电池晶界缺陷导致稳定性不足及铅泄漏风险的双重挑战,重庆大学研究团队创新性地开发了N,N'-双丙烯酰胱胺原位聚合策略。该研究以"Molecularpolymerizationstrategyforstableperovskitesolarcellswithlowleadleakage"为题发表于《ScienceAdvances》。结论展望本研究通过BAC原位聚合策略,同步实现了钙钛矿太阳能电池效率提升、稳定性增强与铅泄漏抑制的三重目标。这项研究为高效、稳定又环保的钙钛矿电池商业化扫清核心障碍,未来清洁能源普及再添强动力。
针对上述问题,北大肖立新教授等团队开发了一种晶体覆盖层技术,成功解决了甲脒铅碘钙钛矿太阳能电池在高湿度环境下制备的难题。文章以“Acrystalcappinglayerforformationofblack-phaseFAPbI3perovskiteinhumidair”为题发表在Science期刊上。1HNMR进一步证实了DMSO的逃逸过程,但值得注意的是,即使延长退火时间,仍有少量DMSO分子残留。这些发现为理解高湿度环境下δ相形成机制提供了直接证据。ISOS-L-2I加速老化测试(85℃)进一步证实CL器件的T90达500小时。
近日,从中国科学院长春应用化学研究所传来消息,该所秦川江、王利祥研究团队在“新型有机自组装分子设计及其在钙钛矿太阳能电池中的应用研究”中取得重大突破。研究团队首次开发出一种高效、稳定且分散性优异的双自由基自组装分子材料,显著提升钙钛矿太阳能电池的光电转换效率、运行稳定性和大面积加工均匀性。相关成果日前发表在国际期刊《Science》上。
需求。近日,中科院长春应化所秦川江、王利祥团队与隆基中央研究院合作,在《Science》发表突破性研究。他们创新性地设计出两种开壳层双自由基有机分子(RS-1和RS-2),成功解决了上述难题,并创下
cells with high-efficiency and ultra-stability发表期刊:《Energy & Environmental Science》发表时间:2025年7月7日作者
在《Science》上,展现了有机分子设计在新能源材料中的巨大潜力。研究背景与挑战传统SAM设计多采用共轭扩展、π-连接或芳环压缩等策略增强电子离域与稳定性,但往往会导致分子堆叠增强,从而降低层的均匀