文章介绍具有宽带隙钙钛矿和Cu(In,Ga)Se
2的薄膜叠层太阳能电池有望成为具有成本效益的轻质光致发光器件。然而,由于宽带隙钙钛矿中的复合损耗和光热诱导退化,钙钛矿/Cu(In,Ga)Se
2叠层太阳能电池的功率转换效率和稳定性尚不能与单结对应物相比。基于此,北京理工大学陈棋等人表明,钙钛矿钝化的常见策略往往失败下结合热和光照应力由于钝化剂解吸。作者展示了一个强大的钝化剂与设计的
创建钙钛矿-有机叠层器件,基于可实现17.9%的功率转换效率和28.60
mA/cm2的高短路电流密度的有机电池;它使用钙钛矿太阳能电池,开路电压为1.37 eV,填充因子为85.5%。新加坡
国立大学科学家设计的新型钙钛矿-有机串联电池 图片来源: 新加坡国立大学新加坡太阳能研究所(SERIS)的研究人员声称,基于宽带隙钙钛矿底部电池和窄带隙有机顶部器件的叠层太阳能电池实现了创纪录的
:设计并合成了新型不对称非富勒烯受体P2EH-1V,具有单侧共轭π桥,降低光学带隙至1.27 eV。效率提升:基于P2EH-1V的钙钛矿-有机叠层太阳能电池实现了27.5%的效率。稳定性增强:优化后的
文章介绍钙钛矿和有机半导体的宽带隙可调谐性使得钙钛矿-有机叠层太阳能电池的开发具有有希望的理论效率。然而,报道的钙钛矿-有机叠层太阳能电池的认证效率仍然低于单结钙钛矿太阳能电池的认证效率,主要
钙钛矿电池效率与稳定性方面取得了重要突破。研究背景NiOx 作为一种无机HTL材料,具备带隙大(3.5 eV)、价带位置合适(VBM ≈ 5.4 eV)及化学稳定性强等优点。然而,其本征空穴传输能力较差
网络快速连接。空间环境对太阳能电池的特殊要求空间光伏组件需满足以下要求:(1)能耐受恶劣的空间环境;(2)重量轻;(3)高功率转换效率(Power Conversion
Efficiency,PCE
·s)、能量为5 eV)、等离子体(电子密度106/cm3、电子温度≤1
eV)和电子、质子、微流星体的电离辐射速度(60 km/s)、X射线和轨道碎片(10 km/s)
等,如下图所示。为了
生产等问题。值得注意的是,目前钙钛矿材料的最低带隙(约1.2eV)限制了全钙钛矿多结光伏器件的发展(例如,四结及以上器件需要至少两个子电池的带隙小于1.15eV)。最近,通过在Pb-Sn钙钛矿薄膜中
晶硅太阳能电池由于带隙约为1.1 eV,其肖克利–奎塞尔(SQ)极限效率约为30%。当前世界纪录的背接触异质结电池效率已达27.3%,接近理论极限。然而常规单结电池存在严重的光谱失配损失:高能光子
关键一步。一、研究背景与挑战宽带隙钙钛矿(Eg ≥ 1.65
eV)是构建叠层太阳能电池的关键前电池材料,但常见的混卤钙钛矿体系(如I/Br混合)在结晶过程中易发生快速晶化和相分离,导致晶粒小
83.73%,JSC为21.99 mA cm⁻²;1.68 eV器件PCE达22.38%,VOC为1.265 V;VOC损失低至0.391 V,接近理论极限。叠层器件突破30%:以优化的1.65 eV前电池
人物简介Stefaan De
Wolf于2005年在比利时天主教鲁汶大学获得博士学位,在此期间,他还加入了比利时IMEC,从事晶体硅太阳能电池的研究。2005年至2008年,他在日本筑波国家先进
工业科学技术研究所(AIST)研究硅异质结结构和器件。2008年,他加入瑞士纳沙泰尔洛桑联邦理工学院(EPFL)光伏和薄膜电子实验室,担任其高效硅太阳能电池活动的团队负责人。自2016年9月以来,他
文章介绍电荷管理在实现高性能体异质结(BHJ)有机太阳能电池(OSCs)中起着关键作用。基于此,华南师范大学刘生建等人通过分别调节苯并双噁唑(BBO)的共轭路径(4,8-和2,6-连接方式),设计了
两种高效的聚合物给体PBBO和PBBO。与PBBO相比,共轭路径的异构化已被证明使PBBO具有更浅的最高占据分子轨道(HOMO)能级(-5.20
eV),显著增强的发光效率以及降低的聚集倾向。这些