和溶胶-凝胶SnO2开发了电子传输层(ETL),通过简单的旋涂方法形成双层。这种配置可在钙钛矿/ETL
界面处产生均匀的薄膜,降低陷阱密度并优化能级对准,从而促进高效的电荷转移。使用导电原子力
了界面工程 BC-PSC
作为下一代光伏(包括柔性和大面积系统)的可扩展、高性能平台的潜力。这项工作强调了ETL工程在减少BC-PSC中的界面缺陷和增强电荷收集方面的关键作用,标志着朝着稳定的背接触
商业化瓶颈。掩埋界面的关键作用SnO₂作为电子传输层(ETL),其表面氧空位(V₀)和羟基会导致非辐射复合;钙钛矿自上而下结晶使掩埋界面缺陷密度高于顶面,影响器件性能和稳定性。现有问题多数界面修饰材料易被
润湿性。二、电子传输层(ETL)制备SnO₂层制备溶液配制:将 SnO₂前驱体(15%)稀释至 5 wt.%。旋涂参数:取 50 μL 溶液,以 2000 rpm 转速旋涂 30 秒。退火处理:150
传输层(HTL/ETL)的优化和钙钛矿添加剂的使用,这些添加剂能够填充晶界,改善界面接触,从而提高器件性能。核心优势:轻量化与灵活性柔性钙钛矿太阳能技术最显著的优势是其出色的功率重量比,这使其在建
。3. 电荷传输层(HTL/ETL):需要与柔性基底良好附着的均匀薄膜引入界面层和添加剂显著提高了性能4. 钙钛矿层:分为全无机和杂化两类添加剂工程是提高机械稳定性的关键策略5. 顶电极:蒸镀金
黑圈分别代表空穴和电子,水平虚线表示分裂费米能级,交错短线为非辐射复合中心,橙/蓝/紫色箭头分别对应HTL界面、钙钛矿体相和ETL界面的非辐射复合通道。d-m系统阐述了p-i-n架构电池的性能损失来源
TiO2因其合适的能带结构、简便的制备工艺和高温稳定性而被广泛用作钙钛矿太阳能电池中的电子传输层(ETL)。与其他方法相比,化学浴沉积(CBD)法能够在低温条件下制备均匀的TiO2薄膜。然而,在沉积
过程中,剧烈的水解反应和反应中间体会导致大团聚颗粒和氧空位的形成,从而导致TiO2
ETL性能不佳和器件性能低下。鉴于此,北航刘慧丛,陈海宁课题组在期刊《Advanced Functional
装单层(SAMs)、钙钛矿吸收层、C60电子传输层(ETL)、透明氧化铟锌 (IZO)背电极、LiF中间层和银(Ag)金属电极构建了顶部钙钛矿器件。该钙钛矿器件的功率转换效率为19.1%,而使用相同
东方日升储能研发的eFlex系列产品颁发了ETL、CB、CE等系列证书,该系列证书的取得标志着该产品可正式进入欧洲北美市场,充分证明了产品在技术指标、安全规范等方面已达到国际领先水平。39载深耕路,初心未改
6月11日,上海—— 在第十八届SNEC光伏展上,苏州恩易浦科技有限公司(NEP)自主研发的BDH-12KSP-LB混合逆变器获ETL认证。这不仅为其深耕全球化市场铺平道路,更标志着中国企业在
传输层:包括电子传输层(ETL)和空穴传输层(HTL),分别负责传输电子和空穴电子传输层(ETL,n型):如二氧化钛(TiO₂)、二氧化锡(SnO₂)、氧化锌(ZnO)、富勒烯及其衍生物(C
高性能钙钛矿太阳能电池需要协同钝化策略来解决电子传输层(ETL)/钙钛矿界面的缺陷,这些缺陷会影响效率和长期稳定性。鉴于此,浙江大学刘鹏&高翔院士&浙江工业大学潘军&西湖大学王睿于
盐酸盐(CEA)、双(2-氯乙基)胺盐酸盐(BCEA)和三(2-氯乙基)胺盐酸盐(TCEA)——作为双功能分子桥,可同时钝化ETL(SnO2)和钙钛矿界面的缺陷,并控制结晶过程。密度泛函理论计算表明