测量方法,能够分别观察外加电压对激子和自由载流子PL的影响。通过研究高效D18:Y6和PM6:Y6有机太阳能电池(能量转换效率分别为16.2%和15.8%),本文展示了以下成果:1)通过自由载流子PL
比短路电流降低了5%;4)探讨了电流降低的可能原因,包括传输限制导致的复合、电极诱导电荷及场依赖的激子解离。该方法为高效有机太阳能电池中的传输和电流损耗诊断提供了新工具。研究亮点创新测量方法:通过改进
:这种受体展现出高的光致发光量子产率和适中的结晶度,平衡了电池的效率和稳定性。低电压损失:采用这种受体的有机太阳能电池实现了高效率和低电压损失。研究内容:该研究专注于通过分子设计来提高电子受体的性能
电压损失的新方法。推动产业化进程:这种3D结构电子受体技术为有机太阳能电池的商业化和大规模生产提供了新的可能性,有助于推动可再生能源技术的发展和应用。科学贡献:该研究为理解和设计高效率、低电压损失的有机
条款,ARTsolar位于德班的工厂已升级为340MW的高效大尺寸晶澳太阳能组件生产线。这些太阳能电池板不仅将符合国际质量标准,还能够根据当地项目需求进行定制。在全球供应链紧张的大背景下,这一
分子的紫外线稳定性和空穴传输能力。界面优化:噻吩基团与钙钛矿中的Pb²⁺离子配位,增强界面结合力,改善钙钛矿薄膜结晶度并减少缺陷。高效稳定器件:基于Me-TPCP的钙钛矿太阳能电池效率高达25.62
紫外线(UV)光诱导的降解,尤其是发生在埋入界面的降解,已成为钙钛矿太阳能电池(PSCs)广泛应用的重要稳定性挑战。本文中国科学院大连化学物理研究所刘生忠和中国科学技术大学杨上峰等人通过合理设计和合
效应,能够大幅提升太阳能电池的效率;二是深入开展了SFOS电池中间层材料技术研究,作为衔接底部TOPCon电池与上层多光子层的核心部分,该中间层材料能够高效促进多光子层产生的载流子向PN结快速迁移并被
(SFOS)技术,达到40%效率突破。一道新能CTO、中央研究院院长宋登元博士,中央研究院副院长、研发总经理章康平先生等与Ned教授团队等围绕SFOS高效电池技术研发进展与产业化推进进行了深入的交流。宋
科研团队通过自组装技术合成了一系列π共轭分子,并将其应用于钙钛矿太阳能电池中,作为空穴选择性层。
74qJefQicUfDvYT4Q/640?wx_fmt=png&from=appmsg&tp=wxpic&wxfrom=5&wx_lazy=1" alt="图片"/全钙钛矿叠层太阳能电池代表着
下一代光伏技术的前沿,为超越单结太阳能电池的肖克利-奎瑟效率极限,同时保持成本效益和可扩展性,提供了一条充满希望的途径。然而,从实验室规模的原型到商业化产品的转变面临着诸多挑战。大面积制造需要开发可扩展的
,并终止了由炘皓新能源主导的“高效太阳能电池智能制造项目”。该项目投产仅一年即被叫停,一度引发行业关注。绵阳炘皓新能源创立于2022年,是一家专业从事高效太阳能电池的研发、制造和销售的省市级重点高科技企业。
2025年5月21日隆基李振国&兰州大学李亚丽&栗军帅于NanoLetters刊发通过在光活性层中添加微量醋酸钇制备高效稳定的无空穴传输层碳基CsPbI2Br太阳能电池的研究成果,为了有效地钝化非配位Pb2+并同时锚定可迁移I-,本文提出了一种简单的策略,即在光活性层中添加醋酸钇。
反式钙钛矿太阳能电池获得了27.18%的效率,这是真空闪蒸技术制备的钙钛矿电池相关研究的最高效率。此外,未封装新型反式电池在最大功率点连续工作1200小时后,仍能保持其初始效率的90%以上;在相对湿度
记者日前从昆明理工大学获悉,该校材料科学与工程学院陈江照教授和何冬梅教授团队在高性能钙钛矿太阳能电池领域取得重要进展,相关成果近日发表于国际材料学期刊《先进材料》上。金属卤化物钙钛矿太阳能电池是一种