在金属卤化物钙钛矿中用无机Cs取代有机阳离子,因其优异的热稳定性和理想的带隙,为发展高性能叠层太阳能电池提供了广阔前景。研究发现,AGS的引入可原位形成PbSO点并与钙钛矿前驱体相互作用,从而严格调控无机钙钛矿的结晶过程,实现快速成核并加速相变过程。结合钙钛矿与TiO之间改善的界面能级匹配,修饰后的无机钙钛矿太阳能电池的光电转换效率从19.84%提升至22.22%,电压亏损仅为0.44V。
混合卤素CsPbClBr钙钛矿量子点已成为纯蓝色发光二极管的有力候选材料。本文郑州大学姚纪松和宋继中等人提出了一种阳离子-阴离子对辅助合成策略,用于制备高质量的CsPbClBrQDs。得益于这种阳离子-阴离子对的协同钝化效应,QDs的光致发光量子产率从42%提升至86%。同时,QDs表现出高结晶质量,有利于载流子传输。本研究表明,协同离子对钝化策略是实现高效稳定纯蓝色钙钛矿LED的一种实用设计方法。
尹志刚教授等人近期开发出氯化锌掺杂新型柔性聚电解质杂化介电薄膜材料,并用于设计和制造多级非易失性低电压柔性有机场效应晶体管存储器。这一创新研究成果,展示了新型柔性聚电解质杂化介电材料及其低功耗OFET存储器在信息感知、存储与计算领域的诱人应用潜力。通过调节栅极电压,成功调控新型聚电解质杂化介电薄膜中的离子迁移能力,从而赋予柔性OFET存储器出色的存储能力。
据日本经济新闻报道称,钙钛矿太阳能电池技术正被应用于高性能光学传感器及显示器发光元件的研究。日前,早稻田大学的研究团队宣布成功研发出用于传感器的钙钛矿晶体,能够精确检测物体表面形态,该技术有望应用于品控环节,包括检测产品缺陷,以及癌症筛查等领域。此外,采用钙钛矿的光学传感器和发光元件也有望得到广泛应用。
基于咔唑的自组装单分子层作为一种有效的空穴传输层,极大地推动了倒置钙钛矿太阳能电池的光电转换效率发展。然而,SAMs在基底上的不均匀分布和非紧密的界面接触会导致SAM/钙钛矿异质结处出现显著的界面能量损失。本研究重庆大学姜庭明和孙宽等人构建了一种小分子4-溴苄基膦酸作为分子桥,连接膦酸和钙钛矿,在改善界面特性方面表现出多功能性。
钙钛矿层与空穴传输材料之间的界面缺陷和自由体积对钙钛矿太阳能电池的效率和稳定性具有关键影响。结合实验表征和原子分子动力学模拟,发现AdF-BCz相较于无氟的NF-BCz和对称氟化的SdF-BCz,表现出更优异的界面钝化稳定性,以及与钙钛矿表面更强的粘附力。此外,AdF-BCz还能减少界面自由体积,促进更紧密的界面接触,有效抑制离子迁移和钙钛矿降解。
自组装单分子层已成为高效钙钛矿太阳能电池中不可或缺的空穴选择性接触层。本文大连理工大学刘国震和史彦涛等人提出了一种利用预吸附的精氨酸作为离子键介体,实现快速可控SAM组装的策略。文章亮点提出预锚定精氨酸作为离子键介体,实现SAM快速可控组装,有效抑制了SAM分子自聚集,显著提升单分子层覆盖度和均匀性,兼容旋涂与刮涂大面积制备。
调控自组装单分子层/钙钛矿界面是提升p-i-n结构钙钛矿太阳能电池空穴提取能力的有效策略。然而,共SAM策略面临锚定位点竞争的问题,可能干扰原有SAM的功能。FPA中的多重活性位点不仅可弥补SAM的锚定缺陷,还能通过配位键和氢键有效钝化钙钛矿埋底界面缺陷,从而显著抑制深、浅能级缺陷。该研究为调控SAM/钙钛矿界面以提升电荷提取效率和环境稳定性提供了重要思路。
近日,韩国延世大学Kim等人提出一种简单、低温、可溶液加工且可扩展的策略,通过调整和利用Sn基钙钛矿的氧化现象来制造高性能增强型JFETs。该研究成果以题为“Revisitingtheroleofoxidationinstableandhigh-performancelead-freeperovskite-IGZOjunctionfield-effecttransistors”发表于NatureCommunications期刊。图文分析:钙钛矿b-JFET工作机理图1钙钛矿双极结型场效应晶体管的工作机制。实验细节通过低温溶液加工方法制备高性能增强型结型场效应晶体管。通过机械剥离去除Parylene-c层后,将PEASnI层暴露在60°C、约40%相对湿度的空气中进行120分钟的热处理,形成氧化表面层。
针对上述问题,浙江大学何海平、戴兴良和浙江工业大学李静等人提出了一种简单的“相再分布”策略,以抑制钙钛矿薄膜中的非辐射俄歇复合。具体而言,研究团队利用独特的挥发性铵盐作为调控剂,驱动结晶过程中低维杂质相的消除,在显著抑制俄歇复合的同时保证了薄膜的低损耗系数。文章亮点1.开发了挥发性铵盐驱动的“相再分布”策略,原位验证了结晶过程中低维钙钛矿杂质相的消除,实现了俄歇抑制和结晶优化。