ZnO,由于制备的TCO表面具有一定绒度,可直接用在电池上。研究人员通过优化LPCVD沉积工艺参数获得的ZnO:B整体性能优于FTO,在此基础上获得单结非晶硅薄膜电池稳定效率达到9.1%。研究人员研究
本征非晶硅薄膜(I-A-SI:H)、P型非晶硅薄膜(p-A-SI:H),形成光生载流子分离的p-n异质结;在硅片的背面依次沉积本征非晶硅薄膜(I-A-SI:H)、n型非晶硅薄膜(n-A-SI:H)形成
率在93-95%;而PERC电池良率在97-98%之间。异质结相比于PERC和TOPCon工艺步骤少,仅有四步,分别为:制绒清洗、非晶硅薄膜沉积、TCO薄膜沉积、电极金属化。理论而言,工艺步骤少,可以
异质结技术最主要的优势。异质结电池的结构决定了可以天然双面发电,工艺流程只有清洗制绒、非晶硅薄膜沉积、导电膜沉积、丝印固化四个环节,相比8道工序的PERC电池大大简化。在技术延伸上,随着异质结技术的逐渐
HJT均采用钝化接触技术来提高转换效率。其中,TOPCon电池以N型硅衬底,通过背面覆盖一层沉积在超薄隧穿氧化硅层上的掺杂多晶硅薄层,形成较好的钝化接触结构;HJT电池通过非晶硅薄膜的引入,能够兼具
一体,根据透光、不透光需求,分别采用非晶硅(薄膜)类组件/未满铺的晶硅组件、晶硅组件。据 BIPVboost 数据,2018年针对幕墙应用的BIPV中,晶硅电池占比为 44%,薄膜类电池为56
非晶硅薄层所吸收。龙头制造商推动HJT组件发展HJT概念最早由三洋电机在20世纪80年代开发(三洋于2009年被松下收购)。然而,这项技术在最近几年才获得推动。当下,一家值得关注的制造商是现已被信实
收购的REC集团。那么,为什么HJT现在受到印度巨头关注,并开始发力?首先,虽然PERC是目前全球光伏行业的主力军,但HJT正迅速成为PERC的竞争对手。非晶硅是薄膜硅,与晶硅不同,它没有规则的晶体结构
、扩散炉、覆膜设备/沉积炉、丝网印刷机、其他炉设备、测试仪和分选机等。电池板/组件生产设备:全套生产线、测试设备、玻璃清洗设备、结线/焊接设备、层压设备等薄膜电池板生产设备:非晶硅电池、铜铟镓二硒电池
利用 PN 结的原理产生光生电流,不同的是 HJT 电池的发射级是一层非常薄的非 晶硅层,然而由于非晶硅本身的特性以及晶格失配产生的缺陷,使得产生的载流
子在接触表面附近很容易复合,因此要在晶体硅
和非晶硅之间添加一层本征非晶 硅薄层来减小载流子的复合。发展历史:从上世纪 80 年代,实验室就开始研究晶体硅和非晶硅叠加的电 池,1990 年最先由日本的三洋公司提出异质结的基本结构,2015 年
非晶硅与导电膜沉积设备,增加靶材需求。●需要双面银浆,且对印刷精度要求更高。●硅片、辅材、设备需要针对性开发以及提效降本。索比咨询认为,由于HJT是一个全新的技术路线,因此在产业生态上落后于更加成熟的
一项就已功不可没。而且从产业技术趋势上看,HJT各种特性更符合技术发展规律,只是崛起仍要时间。HJT的风险在于:●龙头由于旧有产能和避险情绪,短期内放弃HJT路线,延缓HJT生态建设。●非晶硅晶向排列
,在非晶硅材料上也基本完成了国产替代,完成了一次又一次的突破。2021年,中国光伏企业的多晶硅、单晶硅片、电池片、光伏组件产能全球占比均超过75%。光伏玻璃、边框、胶膜、背板等辅材产能在全球也占据优势
。效率:IBC(叠加)TOPCon(双面)HJTTOPCon:实现了无需开孔的钝化接触,未来可升级POLO结构,双面TOPCon理论极限可达28.7%。HJT:晶体硅/非晶硅异质结形成PN结,在晶体硅
与非晶硅之间镀制有本征非晶硅钝化膜,理论极限可达28.5%。IBC:电极放在背面减少光照遮挡损失,并且使用隧穿氧化层做电子传输,未来可叠加TOPCon或HJT技术,叠加后效率上限可达29.1%。成本