韩国高丽大学、中国天津大学、化学科学与工程协同创新中心(天津)和海河可持续化学转化实验室的研究人员报告了一种双界面分子定制钝化策略,可以改进钙钛矿发光二极管的设计。用于双界面钝化的无溶剂摩擦转移策略。为了解决这个问题,该团队开发了这种无溶剂的摩擦转移方法,该方法能够实现精确的分子沉积,同时保持钙钛矿薄膜的完整性。
钙钛矿异质结的合理设计对提升钙钛矿太阳能电池的效率和运行稳定性至关重要。然而,传统方法在纳米尺度上精确控制界面相纯度及实现共形异质结覆盖方面面临挑战。本研究香港城市大学朱宗龙、伦敦帝国理工学院NicholasJ.Long和中南大学李博等人提出了一种“软-软”相互作用引导策略,通过在有机阳离子溶液中引入二甲基硫醚作为软路易斯碱添加剂,调控钙钛矿异质结的形成。
透明导电氧化物作为钙钛矿太阳能电池的基底,长期以来被认为具有良好稳定性,因此其对器件寿命的影响常被忽视。蒸发的钇有效锚定了FTO中的部分晶格氧,防止元素解离。此外,YO在粗糙FTO表面实现了保形沉积,提高了界面粘附能,建立了有效的离子扩散和载流子非辐射复合损失屏障。该策略显著增强了PSC的结构完整性,大幅提升了操作稳定性。
尽管晶格材料中的边缘和缺陷只占很小的一部分,但它们对材料的性能有着巨大的影响。然而,由于其极端的敏感性,获取其边缘的清晰图像一直是一个挑战。安特卫普大学TimothyJ.Pennycook、上海科技大学于奕以及普渡大学窦乐添等人通过使用真正的高速超低剂量四维扫描透射电子显微镜,并采用剂量分割技术,我们在已知的最低剂量原子分辨率下进行了叠层成像,不仅揭示了卤化物钙钛矿边缘的详细原子结构,还揭示了其结构动力学。
更重要的是,由于钙钛矿体相的本征特性,这种电子积累效应延伸至整个钙钛矿吸收层,使其平均电子浓度提升约40倍,从而大幅增强了电子电导率,降低了传输损失。Figure4展示了最终器件的卓越性能和稳定性。
而引入DCl层后,PLQY和QFLS值大幅恢复,证明DCl有效抑制了C60诱导的复合损失。未经极化时,DCl处理的单结钙钛矿电池效率从19.0%提升至21.9%(图a),大面积器件效率达21.0%(图b)。在钙钛矿/硅叠层电池中,DCl处理使效率从28.4%提升至30.5%,经极化后进一步达到31.1%的认证效率。
近日,日本新首相高市早苗上任后,将钙钛矿太阳能电池与核电并列作为“国产重要能源”,通过百亿级补贴、量产研发计划及供应链自主化布局,试图以钙钛矿为突破口,打破中国在光伏领域的主导地位。当前,中国钙钛矿光伏已发展至破局关键时期。最后,中国钙钛矿高质量发展亟需加快布局和完善“标准体系”。日本限制传统光伏却押注钙钛矿,恰恰印证了钙钛矿对全球能源格局的重要性。
除单结器件外,偶极钝化技术对全钙钛矿叠层太阳能电池也具有深远意义。通过解决窄带隙子电池中最棘手的损耗问题之一,该方法为钙钛矿叠层器件实现此前被认为难以企及的效率铺平了道路,预示着高效、可规模化的太阳能利用新时代的到来。
Wu 等人设计了并合成了开壳层的两种双自由基SAMs:RS-1 和 RS-2,其中RS-2额外引入甲氧基增强与钙钛矿的相互作用,RS-1 和 RS-2平面共轭的给体-受体结构,可以促进电子离域与双自由基态形成,通过引入空间位阻基团,提高了分子稳定性和溶液可加工性。
上海交通大学环境科学与工程学院博士生梁俣港、上海交通大学与宁德时代校企联培博士生陈国栋、上海交通大学溥渊未来技术学院未来光伏研究中心助理研究员王耀和博士后邹瑜为该论文的共同第一作者。上海交通大学环境科学与工程学院缪炎峰副研究员、宁德时代郭永胜博士、上海交通大学环境科学与工程学院陈悦天副教授、上海交通大学赵一新教授为共同通讯作者,上海交通大学为第一单位。