聚合物太阳电池由p-型共轭聚合物给体和富勒烯衍生物或非富勒烯n-型有机半导体受体的共混活性层夹在透明导电电极和金属电极之间所组成,具有可溶液加工、质量轻以及可制备成柔性和半透明器件等突出优点,近年来
成为全球能源领域研究的热点。聚合物太阳电池的商业应用需要实现器件的高效率、高稳定性以及低成本,这主要依赖于光伏材料的发展。
自1995年Alan J. Heeger等提出本体异质结概念以来,聚合物
研究人员在太阳能板上设备两层透明聚合物,分别是聚二甲基硅氧烷(Polydimethylsiloxane)与导电高分子 PEDOT:PSS。上层聚二甲基硅氧烷为摩擦起电的材料之一,下方的 PEDOT
:PSS 聚合物层则是太阳能板与纳米摩擦发电机的共同电极,该聚合物不仅可减少光线反射,还可以增强发电效率。
当开始下雨时,纳米摩擦纳米摩擦发电机将会开始运作,PEDOT:PSS 材料会负责把电能
隙非富勒烯受体材料IDTT-T,并将该材料与低带隙PTB7-th聚合物给体配对使用,制备出了高性能有机太阳能电池。该电池的能量损失仅为0.57电子伏特,开路电压高达1伏,能量转化效率约为10%。
该
受体材料IDTT-T,并将该材料与低带隙PTB7-th聚合物给体配对使用,制备出了高性能有机太阳能电池。这项工作表明,通过采用中间带隙非富勒烯受体材料和窄带隙给体材料组合的新设计思路,可同时实现有机太阳能电池的高开路电压和高能量转化效率。
聚合物被用作基片和涂层,同时一种叫做酞酸二丁酯(DBP)的有机材料被作为主要的吸光层。 与传统的太阳能电池制造工艺不同,这整个过程是在室温的真空房间里完成的,而且没有使用任何化学溶剂或者刺激性化学物质
被涂上了一层PEDOT:PSS导电聚合物(聚(3,4-乙二氧基噻吩)聚苯磺酸酯)的铜绿KAIST的科学家们最近在可织LED纤维的生产中使用了相同的成分在层压过程中也起到了钙钛矿的粘附层的作用。 为了
背板失效模式 裂缝和分层会破坏组件的绝缘性。 泛黄会导致背板聚合物的机械降解和脆化。 PVDF背板失效模式 外层开裂大面积的裂缝导致分层,直接将核心层暴露在环境中 内层泛黄
5~10个充电周期,远远不能使电池成为一种经济有效的储能解决方案。这种退化是因为氧气渗入电池的阳极,导致阳极击穿,使电池本身无法再充电。
聚合物让电池寿命延长12倍
圣德里森实验室的博士研究生保罗
吉尔摩开始将聚合物加入阴极,尝试是否能保护阳极避免受到氧气的伤害。他认为,如果找到一种方法做到这一点,将延长钾氧电池的寿命。结果证明他是对的:研究小组意识到聚合物的膨胀对其性能起着至关重要的作用
要反应植物光合作用。
太阳电池是将太阳能直接转化成电能的装置,包括单晶硅、多晶硅太阳电池,无机半导体薄膜太阳电池、染料敏化太阳电池、钙钛矿太阳电池和有机/聚合物太阳电池。其中聚合物太阳电池的关键材料
包括给体、受体和电极界面修饰层材料,光电转换过程包括吸光、激子扩散、激子电荷分离、电荷传输、电荷收集。
总结起来,聚合物太阳电池具有器件结构简单、成本低、重量轻以及可以制备成柔性和半透明器件等突出优点
柔性光伏BIPV采用聚合物材料代替传统光伏组件的玻璃,因此具有更轻柔薄美的特点,更容易结合建筑的造型进行弯曲。若直接替代屋顶彩钢瓦,需要额外敷设保温层、防火层,以及防水结构设计。这是目前最轻柔的
、锂聚合物电池、铅酸蓄电池、智能电池、钠硫电池)、储能电源、超级电容器、可再生燃料电池、液流电池等技术、设备及材料 B. 储能电站及EPC工程: BMS电池管理系统、PCS储能逆变器、微电网、电动汽车充换电站