&Bo He研究背景钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已突破26.5%,逐步逼近最先进的晶体硅太阳能电池水平。在反式钙钛矿电池性能提升过程中,有机空穴选择性自组装分子(SAMs)发挥
传统小分子或聚合物空穴传输层的导电性。但迄今为止,具有双自由基特性的SAMs仍鲜有报道。如何设计出在PSCs中稳定高效工作、同时确保大面积均匀成膜的双自由基SAMs,仍是亟待突破的难题。此外,当前仍缺乏
高性能柔性太阳能电池需要整个器件结构的协同优化。文章详细分析了各功能层的材料选择和设计原则:1. 柔性基底:主要分为三类聚合物基底(PET、PEN):成本低、柔韧性好,但耐温性较差(150°C)柔性玻璃
发展驱动力:市场对柔性太阳能电池的需求(1)轻量化与灵活性传统硅基太阳能板重量大、安装复杂,而柔性太阳能电池可弯曲、可折叠,适用于曲面和动态环境(如汽车、无人机等)。(2)成本下降与效率提升柔性
)的纪录效率已接近其~29.4%的实用理论极限,效率提升空间日益受限。为突破这一限制并进一步降低光伏发电的平准化成本,超越单结器件效率极限的多结架构方案成为迫切需求。其中全钙钛矿叠层太阳能电池通过能带隙
未来研究方向,并绘制该技术走向实际应用的路线图。图框1
a展示了全钙钛矿叠层器件的两种构型分类:左侧为四端(4T)结构,右侧为两端(2T)结构。b部分阐释了2T全钙钛矿叠层太阳能电池的材料体系与工作
文章介绍阴极中间层 (CIL) 在调节电极的电导率、界面偶极子和功函数方面的能力在决定有机太阳能电池 (OSC)
的光伏性能方面起着关键作用。广泛使用的基于苝二酰亚胺的 CILs 受到有限
,科研团队改善了阴极界面层的性能。效率突破:采用这种混合阴极界面层的有机太阳能电池实现了超过20%的光电转换效率。稳定性增强:优化后的电池在长期运行中展现出更好的稳定性。研究内容:该研究专注于通过阴极
Voltage Loss”为题发表在顶级期刊Advanced
Materials 上。研究亮点:三维结构电子受体:开发了一种新型3D结构的电子受体,有助于提高有机太阳能电池的性能。高PLQY和适度结晶度
:这种受体展现出高的光致发光量子产率和适中的结晶度,平衡了电池的效率和稳定性。低电压损失:采用这种受体的有机太阳能电池实现了高效率和低电压损失。研究内容:该研究专注于通过分子设计来提高电子受体的性能
:eC9-2Cl的器件相比,其短路电流密度(JSC)和填充因子(FF)参数显著更高。此外,PBBO表现出良好的适用性,在全聚合物太阳能电池中实现了19.4%的令人印象深刻的效率,并获得了第三方认证的
文章介绍电荷管理在实现高性能体异质结(BHJ)有机太阳能电池(OSCs)中起着关键作用。基于此,华南师范大学刘生建等人通过分别调节苯并双噁唑(BBO)的共轭路径(4,8-和2,6-连接方式),设计了
Pochtaruk表示:“我们在明尼苏达州Rogers新工厂实现产能接近翻倍,我们将继续为客户提供顶级的全本土化产品和服务,同时通过整合美国本土生产的电池、边框、聚合物等关键部件,实现美国太阳能供应链回流
这一更加宏伟的目标。”此次明尼苏达州新组件生产线的投产距该公司公布在美国建设近1GW组件装配产能和1.5GW太阳能电池产能计划已近两年。为支持这一计划,Heliene去年9月通过税收抵免转让获得了超过
实现大面积、高均匀性和高重复性的无掺杂有机空穴传输层(HTL)沉积,是推动全印刷n-i-p钙钛矿太阳能电池组件商业化的关键。然而,传统聚合物空穴传输材料(HTM)在印刷过程中表现出非牛顿流体特性,其
聚合物D18结合提出了一种分子协同(MC)策略。研究发现,预聚集的聚合物D18可作为“晶种”,通过分子间C-H···π相互作用诱导小分子BDT-MB优先形成面朝上取向,从而抑制其不利组装行为。此外
战略性地利用自组装单层膜(SAM)显著提高了倒置钙钛矿太阳能电池(IPSC)的界面接触和功率转换效率(PCE)。然而,SAM
和钙钛矿层之间的粘附力不足仍然是一个关键挑战,限制了进一步的性能增强
阳离子在底部界面的聚集促进了通过巯基端基的原位聚合,在钙钛矿/SAM 界面形成POL-AVM
聚合物。这种聚合物增强了界面粘附力,调节钙钛矿结晶,并通过多个氢键强烈锚定有机阳离子来增强结构
文章介绍紫外线(UV)辐射对普遍存在的p-i-n的稳定性构成了实质性挑战(正-本征-负)钙钛矿太阳能电池(PSC),由于光从HTL侧入射,需要更稳健的空穴传输层(HTL)。基于此,南京大学陈尚尚等人
揭示了常用的自组装单层(SAM)-型HTL具有差的UV稳定性,这会对空穴提取造成不可逆的损害并损害器件稳定性。为了解决这个问题,作者开发了一种名为Poly-2PACz的聚合物和紫外线稳定HTL,与