5月25日,土耳其贸易部在官方公报发布两则通知,宣布对原产于中国的太阳能电池组件接线盒和铝框架启动反倾销调查。这是继2024年3月对越南、马来西亚等国太阳能电池板征收关税后,土耳其再次将贸易保护矛头
指向中国光伏产业链。01.调查细节此次调查由土耳其本土企业EkinlerEndüstriA.Ş、HatkoTeknik等发起,涉及两类关键产品:太阳能电池板接线盒:倾销调查期为2024年全年,损害调查
以吸收更广的阳光,从而提高整体能量转换效率。其中,钙钛矿和有机材料的组合特别有前途,可用于生产适用于可穿戴设备和建筑集成光伏的薄而灵活的太阳能电池板,使其成为下一代能源之一。研究团队通过混合两个自组装
可扩展生产。Kim教授评论道:“通过开发一种自组装的空穴传输层,提高电荷提取、界面稳定性和结构耐久性,我们在提高叠层太阳能电池的性能方面取得了重大飞跃。这一发展使我们更接近于实现用于实际应用的薄、灵活和高效的下一代太阳能电池板。
在应对气候变化的全球行动中,太阳能技术正经历着革命性突破。被誉为"光伏新星"的钙钛矿材料,因其独特的光电特性备受关注——它不仅具备突破传统硅基太阳能极限的理论转化效率,生产能耗更是只有传统材料的
十分之一。这种薄膜材料可制成半透明或柔性组件,正在开启建筑光伏一体化、可穿戴设备供电等全新应用场景。在这场钙钛矿光伏技术革命的核心战场,新材料开发正成为决胜关键。其中,自组装单分子层(SAMs)作为关键
全钙钛矿串联太阳能电池(TSCs)由宽带隙(WBG, 1.7-1.8 eV)的顶部电池与窄带隙(NBG, 1.2-1.3
eV)的底部电池组成,被认为是有望打破单结钙钛矿太阳能电池(PSCs
。宽带隙亚电池中NiOx与自组装单分子层(SAMs)之间的界面接触限制了TSC的效率和稳定性。在普通的强酸性磷酸自组装单分子层(PA-SAM)中,强酸性磷酸(PA)锚定会腐蚀活性NiOx,影响器件的
文章介绍自组装单分子膜(SAM)倒置钙钛矿太阳能电池因其高效率和长期运行稳定性而受到广泛关注,但SAMs/钙钛矿界面处的空穴提取效率通常低于电子提取效率。基于此,南京工业大学陈永华等人报道了通过使用
提升了倒置钙钛矿太阳能电池的性能和稳定性。通过降低能量势垒和加速空穴提取,增强了SAMs(自组装单分子层)与钙钛矿之间的P型接触。实现了从δ-FAPbI₃到α-FAPbI₃的相变,进一步优化了钙钛矿的
文章介绍反式钙钛矿太阳能电池(PSCs)在自组装分子(SAMs)技术进步的推动下取得了快速的发展。然而,实现基底上均匀的SAM覆盖仍然是一个挑战,这直接影响着器件的性能和稳定性。基于此,南开大学姜源
PhPAPy
SAM,所组装的反式PSCs实现了26.74%的PCE,以及经过认证的稳定功率输出(SPO)效率为26.12%(由中国计量科学研究院认证)。这些器件在65℃、环境湿度(ISOS-L-2
近日,日本东京城市大学的研究人员成功制造出一种可弯曲的钙钛矿 -
硅叠层太阳能电池,其转换效率达26.5%,这一成果成功刷新了柔性钙钛矿 - 硅叠层太阳能电池的效率纪录。图源网络此次日本东京
城市大学研究团队制造的可弯曲钙钛矿 -
硅叠层太阳能电池,结构独特且复杂。它由底部可弯曲的薄膜异质结电池和顶部通过低温工艺制造以防损坏的钙钛矿电池组成。这种分层设计结合了两种电池的优势,既保证了电池的
用作空穴选择性触点的有机分子,称为自组装单层 (SAM),在确保高性能钙钛矿光伏方面发挥着关键作用。SAM
和钙钛矿之间的最佳能量对准对于所需的光伏性能至关重要。然而,许多 SAM 是在最佳带隙
中的诱导效应对于优化宽带隙钙钛矿电池的性能至关重要。宽带隙钙钛矿电池:通过利用感应效应,科研人员能够制造出更高效的宽带隙钙钛矿太阳能电池。叠层太阳能电池效率提升:这种宽带隙钙钛矿电池特别适合用于制造
钙钛矿/硅叠层太阳能电池的功率转换效率(PCE)已超过单结电池,但其记录效率仍低于理论最大值,且稳定性远低于晶硅太阳能电池。这些挑战主要源于开路电压(VOC)的显著损失和宽带隙钙钛矿器件的不稳定性
,分别由非辐射复合和异质结界面的降解引起。本文佛山仙湖实验室Mathias Uller
Rothmann、福建农林大学杨宁和欧阳新华、武汉理工大学李伟等人开发了一种新型自组装单分子层(SAM)材料
钙钛矿/硅叠层太阳能电池已显示出比单结电池更高的能量转换效率。然而,其记录的效率仍未达到理论最大值,且其稳定性明显低于晶体硅太阳能电池。这些挑战源于宽带隙钙钛矿器件的开路电压大幅损失和不稳定性,这
主要由异质结界面处的非辐射复合和降解引起。具体而言,氧化铟锡(ITO)与自组装单分子层(SAM)之间的弱粘附性,以及SAM与钙钛矿之间相互作用不足,导致了这种不稳定性。鉴于此,武汉理工大学李蔚,佛山市