纳米电子

纳米电子,索比光伏网为您提供纳米电子相关内容,让您快速了解纳米电子最新资讯信息。关于纳米电子更多相关信息,可关注索比光伏网。

什么,葡萄皮也能做光伏电池?来源:光伏测试网 发布时间:2019-10-23 09:04:46

电子来捕捉阳光,半导体由多孔二氧化钛纳米颗粒组成。产生的电子能够通过外部电路,产生可再生和可持续的电力。 这种类型的太阳能电池在纳米技术领域模拟叶绿素光合作用过程,代表了一种替代硅电池的经济效益和

Imec EnergyVille和 PVcase合作开发双面光伏产能模拟软件来源:PV-Tech每日光伏新闻 发布时间:2019-09-17 16:15:58

纳米电子、能源和数字技术研究创新中心Imec与EnergyVille公司、立陶宛软件公司PVcase合作开发了一种商业软件解决方案,这种解决方案可以轻松设计并准确预测最先进的光伏电站产能。据称,原型

Imec、EnergyVille和 PVcase合作开发双面光伏产能模拟软件来源:PV-Tech 发布时间:2019-09-17 09:52:29

纳米电子、能源和数字技术研究创新中心Imec与EnergyVille公司、立陶宛软件公司PVcase合作开发了一种商业软件解决方案,这种解决方案可以轻松设计并准确预测最先进的光伏电站产能。据称,原型

2019 CITPV高效电池技术论坛:聚焦电池技术 探索行业前沿来源:索比光伏网 发布时间:2019-09-06 09:20:42

能否实现还是要看量产技术成熟度和性价比。 江苏微导纳米装备科技有限公司CTO黎微明 ALD目前是高效电池产业的主流技术,可以延续到后PERC时代,在综合成本上ALD具有重要优势。据黎微明介绍
。 协鑫纳米科技有限公司代表孙璇 钙钛矿组件的稳定性优于晶硅组件,虽然晶硅结构稳定,但晶硅效率的衰减与晶格无关,而是源自于杂质对晶片的扩散,而钙钛矿对杂质并不敏感,因此在稳定性方面具有极大优势

中国国际光伏技术论坛:聚焦电池技术分论坛 探索行业前沿来源:索比光伏网 发布时间:2019-09-05 19:38:31

能否实现还是要看量产技术成熟度和性价比。 江苏微导纳米装备科技有限公司CTO黎微明 ALD目前是高效电池产业的主流技术,可以延续到后PERC时代,在综合成本上ALD具有重要优势。据黎微明介绍
。 协鑫纳米科技有限公司代表孙璇 钙钛矿组件的稳定性优于晶硅组件,虽然晶硅结构稳定,但晶硅效率的衰减与晶格无关,而是源自于杂质对晶片的扩散,而钙钛矿对杂质并不敏感,因此在稳定性方面具有极大优势

量产前夜 钙钛矿太阳能电池成为风险投资关注焦点来源:能源评论 发布时间:2019-08-22 12:24:08

领域,一般使用的是有机无机复合的钙钛矿。钙钛矿一般是作为太阳能电池的吸收层来使用,在接受太阳光的照射以后,钙钛矿吸收了光子以后会产生电子空穴对。电子带负电,而空穴可以看成是带正电。当阳光照射到这些电子

基于纺织品的太阳能电池:应用前景广阔来源:IntelligentThings 发布时间:2019-08-06 14:43:45

额外表面来发电。 创新 德国弗劳恩霍夫陶瓷技术和系统研究所(Fraunhofer IKTS)、弗劳恩霍夫电子纳米系统研究所(Fraunhofer ENAS)、萨克森州纺织研究中心以及工业合作伙伴
弗劳恩霍夫陶瓷技术和系统研究所系统集成与电子封装部门主管 Lars Rebenklau 博士表示:许多工艺都可以将太阳能电池融入到纺织品涂层中。换句话说,这些太阳能电池的基底是纺织品,而不是通常使用的玻璃

刚刚,NERL更新单结钙钛矿最高效率!来源:智汇光伏 发布时间:2019-08-04 11:13:32

的大热门钙钛矿光伏电池);使刘明侦成为我国最年轻国家青年千人,电子科技大学材料与能源学最年轻的副院长(详见:光伏好青年:研究钙钛矿的美女学神!) 1、钙钛矿的主要优势1)转换效率潜力大、发展速度
%,远高于目前的晶硅电池理论上限。 2)电池制作工艺简单,成本低 实验室中常采用液相沉积、气相沉积工艺、液相/气相混合沉积工艺,工艺简单、成本低廉。今年2月,苏州协鑫纳米科技有限公司发布了其在钙钛矿

彩色高效钙钛矿电池效率新突破来源:光伏领跑者创新论坛 发布时间:2019-07-17 19:04:19

在为实现较高效率的彩色PSC电池付出了巨大的努力,但高效彩色PSC电池的结构设计仍然是一个挑战。 具有显著光子结构的二维图案化纳米碗阵列先前被用于电子传输层(ETL)来制造有效的PSC,但所获得的
PSC仅显示出暗褐色或深棕色,这可能与钙钛矿涂层完全填充纳米碗有关。 最近,北京大学科学家李明琦研究小组采用了一种新的策略,通过将均匀的钙钛矿薄层精细地沉积到排列的NBS中,在不影响其光子性质的情况下

突破!晶硅光伏电池效率上限或提至35%来源:材料科学与工程 发布时间:2019-07-14 09:24:09

,目前的钝化层都太厚了。 新方案的关键是用氮氧化铪对硅材料进行钝化,得到的钝化层厚度仅0.8纳米(1纳米等于十亿分之一米),可容许更多电子通过。研究表明,并四苯每吸收一个光子,平均有1.3个电子可穿