据报道,来自沙特阿拉伯阿卜杜拉国王科技大学(KAUST)和台湾中央大学的电子工程系学生共同开发了一种新型工艺制备的熔融石英玻璃纳米材料,应用该材料的玻璃涂层能够大幅改善硅晶ink"光伏太阳能面板的
属性,使得其能够从多角度吸收阳光能量,并且大幅提高太阳能电池的储能效率。新型纳米玻璃涂层具有独特的复合层次结构,材料内部结合了超细超薄的纳米管结构和蜂窝层状的纳米墙结构,在纳米墙结构高效吸收光线的同时
索比光伏网讯:据报道,来自沙特阿拉伯阿卜杜拉国王科技大学(KAUST)和台湾中央大学的电子工程系学生共同开发了一种新型工艺制备的熔融石英玻璃纳米材料,应用该材料的玻璃涂层能够大幅改善硅晶光伏太阳能
面板的属性,使得其能够从多角度吸收阳光能量,并且大幅提高太阳能电池的储能效率。新型纳米玻璃涂层具有独特的复合层次结构,材料内部结合了超细超薄的纳米管结构和蜂窝层状的纳米墙结构,在纳米墙结构高效吸收光线的
修饰电极型、纳米晶类型和有机太阳能电池。国内李欣、黄鲁成通过Fisher-Pry模型分析,对1974-2010年间全球染料敏化太阳能光伏技术的发展趋势进行研究;杨中楷、刘佳利用太阳能光伏电池数据,通过
。1960年前后,H.Gerischer等人发现染料吸附在半导体上并在一定条件下能产生电流,这成为光电化学电池的重要研究基础。在随后的30年间,H.Gerischer等研究了各种染料敏化剂与半导体纳米晶间
电极型、纳米晶类型和有机太阳能电池。国内李欣、黄鲁成通过Fisher-Pry模型分析,对1974-2010年间全球染料敏化太阳能光伏技术的发展趋势进行研究;杨中楷、刘佳利用太阳能光伏电池数据,通过知识
等人发现染料吸附在半导体上并在一定条件下能产生电流,这成为光电化学电池的重要研究基础。在随后的30年间,H.Gerischer等研究了各种染料敏化剂与半导体纳米晶间光敏化作用,但是研究产生的光电转换
的硅晶电池还是相同的。光电转换电池需要依赖于半导体。半导体以纯物质存在时是绝缘体,但是被加热或和其他材料结合时便能够导电。当半导体材料被混合或掺杂磷后,就有了额外的自由电子,这就是我们所熟知的N型
半导体中加入硅,而最新一代的薄膜太阳能电池使用碲化镉或铜铟镓硒薄层替代硅。Nanosolar公司已经开发出了一种新工艺将铜铟镓硒材料制成含油墨的纳米粒。一个纳米粒是指至少在一维上的尺寸小于1纳米的粒子。以
晶电池还是相同的。光电转换电池需要依赖于半导体。半导体以纯物质存在时是绝缘体,但是被加热或和其他材料结合时便能够导电。当半导体材料被混合或掺杂磷后,就有了额外的自由电子,这就是我们所熟知的N型半导体
中加入硅,而最新一代的薄膜太阳能电池使用碲化镉或铜铟镓硒薄层替代硅。Nanosolar公司已经开发出了一种新工艺将铜铟镓硒材料制成含油墨的纳米粒。一个纳米粒是指至少在一维上的尺寸小于1纳米的粒子。以纳米
技术,使接触角大于150时为超疏水表面,通过涂层表面乳突纳米结构使水滴极易从玻璃表面滚落,形成我们俗称的荷叶效应。反之,小于5时为超亲水表面。水滴落在玻璃表面后,均匀的铺展开,和玻璃表面达到最大接触面
以下两点普遍问题:1、通过改变材料表面纳米形貌使膜层疏水,疏油性却不好,而电站现场很多灰尘和污染物都含有油性物质,油性物质极易粘附在玻璃表面。同时,由于涂层表面疏水,下雨或冲洗时,水又很难和大面积的油性
转化效率已高达20.4%,进一步缩小了与硅晶电池差距。目前该实验室已与瑞士FlisomAG开展合作,致力于该项技术的商业化应用。(3)弱光性能出色CIGS薄膜太阳能电池不仅在阳光直射下具有较高的
、Se共蒸发,然后进行二次硒化的技术,成功制备了60cm120em大面积电池组件。表2列出了世界主要CIGS厂商生产的大面积电池组件性能。特别要指出的是,美国Nanosolar采用纳米涂覆(即将
已高达20.4%,进一步缩小了与硅晶电池差距。目前该实验室已与瑞士FlisomAG开展合作,致力于该项技术的商业化应用。(3)弱光性能出色CIGS薄膜太阳能电池不仅在阳光直射下具有较高的转化效率,其
。 下一页 余下全文表2列出了世界主要CIGS厂商生产的大面积电池组件性能。特别要指出的是,美国Nanosolar采用纳米涂覆(即将CIGS纳米粒子涂覆在
影响黑硅表面的光学特性,然后在黑硅发射极表面原子层沉积Al2O3,起到优异的表面钝化效果。 1.引言黑硅表面有纳米级小山峰,反射率很低。通过优化反应离子刻蚀(RIE)工艺的参数来制作黑硅,由于其在很宽
了黑硅表面随机纳米级小山峰的平均高度和宽度为1um和200nm。在890℃、910℃、930℃三个条件下BBr3扩散形成硼发射极。黑硅表面等离子辅助原子层沉积(PA-ALD)10nm厚的Al2O3