可大幅度提高,一项新的研究探讨了太阳能转换机制,项目领导是得克萨斯大学奥斯汀分校(UniversityofTexasatAustin)化学家朱晓阳(XiaoyangZhu)。采用并五苯半导体晶体,传统
转换效率达到66%。朱晓阳和他的研究小组先前曾表明,可以捕获这些热电子,只需要使用半导体纳米晶体。他们在2010年的《科学》上发表了那项研究,但朱晓阳说,靠那项研究,要实际实施一项可行的技术,还面临很多
Nanosolar提出了太阳能产业的“三次技术革新浪潮”概念。将以太阳能级硅和硅片为原材料的晶体硅电池作为第一次技术革新浪潮;将薄膜太阳能电池列为第二次技术革新浪潮;最新一个是以柔性电池为代表。早在2000年
索比光伏网讯:北京理工大学化学学院曲良体教授课题组成功地制备出石墨烯量子点,该量子点具有不同于常规碳纳米粒子的发光特性,当用作电子接受体,能大大提高本征太阳能电池的光电转化效率。该研究成果发表于国际
重要期刊《先进材料》(Adv. Mater. 2011, 23, 776780)。掺杂氮元素到碳材料对发展高效氧还原反应催化剂具有重要意义,氮掺杂的碳纳米材料具有廉价、环保且低中毒效应,在燃料电池
索比光伏网讯:太阳能发电必须具备更高的效率和更低的成本才能与化石燃料发电相抗衡。目前硅基太阳能电池的太阳能领域的主导技术,但其高成本阻碍了硅基太阳能电池的广泛应用。使用无机纳米晶体或量子点的
索比光伏网讯:太阳红外辐射通过表面上的微孔进入芯片,但是,反射光线在逃逸时,会被挡住,因为有精确设计的几何结构,这种结构使光线只有非常小的逃避角度。大多数技术利用太阳能量是采集阳光本身,然后再转换
光伏电池(thermophotovoltaics),它在麻省理工学院(MIT)的起源,可以追溯到20世纪50年代。在材料中创造一种光子晶体结构,这样,它发射光线时,就会优先朝着一个方向,而且是在一定的
索比光伏网讯:大多数技术利用太阳能量是采集阳光本身,然后再转换为电力,这要使用光伏材料。其他方法利用太阳热能,通常是采用镜子集中太阳光,产生足够的热量,煮沸水,转动发电涡轮机。第三是不太常见的方法
研究人员已经找到一种方法,在使用热光电设备时,不需要用镜子聚集阳光,这就使这种系统更简单也更便宜。关键是要防止热量逸出热电材料,这些事情麻省理工学院的研究小组做到了,因为他们使用了一种光子晶体:实质上
几乎不可能实现。1998年,美国科学家研制出了首个氮化镓晶体管。 然而,氮化镓禁带宽度大、击穿电压高、热导率大、电子饱和漂移速度高、抗辐射能力强和良好的化学稳定性等优越性质,使得它成为迄今理论上电光
以氮化镓为衬底的芯片器件,都需要精密的纳米加工工艺。由于技术门槛极高,在全球能够规模化生产氮化镓晶片的公司屈指可数,日本的住友、日立电缆在这个领域中占领着制高点,其次为美国公司。 徐科带领的纳维科技是
索比光伏网讯:美国科学家开发出一种新技术,首次成功地将复合半导体纳米线整合在太阳能硅片上,攻克了用这种半导体制造太阳能电池会遇到的晶格错位这一关键挑战。他们表示,这些细小的纳米线有望带来优质高效且
太阳能电池的半导体制造装置,这是因为现在的半导体制造装置性能低下、生产效率低且价格昂贵。例如,要建设一处45纳米级LSI(大规模集成电路)设备,需要5000亿~1万亿日元的庞大投资。 需要
,半导体制造技术的全球权威、日本东北大学名誉教授大见忠弘一语道破,让太阳能电池产业成为东北地区新的骨干产业。 大见教授之所以敢说这句话,是因为以他为核心开发了30年的半导体制造装置的出现
索比光伏网讯: 日前,中科院微电子所在新型Al2O3表面钝化研究上取得突出进展。 良好的表面钝化对于提升晶体硅太阳能电池的开路电压十分重要,传统晶体硅电池常用等离子体增强化学气相沉积法沉积
利用Al2O3对晶体硅进行表面钝化,再结合新的工艺,有效地提升了p型和n型晶体硅电池的效率,Al2O3钝化技术有望在太阳能电池的生产中得到大规模的应用。 中科院微电子所微波器件与集成电路研究室(四室