宽带隙钙钛矿在实现高效钙钛矿/硅叠层太阳能电池方面潜力巨大,然而钙钛矿/电子选择性接触界面的能量损失仍是限制其效率提升的关键瓶颈。更重要的是,该笼状阳离子可诱导形成面内取向的纯相准二维钙钛矿,并表现出显著铁电效应,通过提升表面功函数促进载流子分离与提取。
倒置钙钛矿太阳能电池因钙钛矿表面及功能层间的非辐射复合而面临性能限制。两者协同使钙钛矿准费米能级分裂均质提升约100mV。基于此,两端钙钛矿-硅叠层电池在1cm器件上实现认证开路电压2V,效率超过31%。该钝化策略具备良好扩展性,60cm活性面积的均质钝化器件获得认证效率28.9%。叠层器件高性能与稳定性兼顾:1cm钙钛矿-硅叠层电池认证效率达31.6%,开路电压突破2V,并在暗态氮气环境中展现良好稳定性,为大面积产业化提供可靠路径。
本文浙江大学杭鹏杰和余学功等人提出了一种在二维钙钛矿中间层中引入n型调控的策略,通过将SbCl掺入PEAI基二维钙钛矿中,实现了2D层的n型掺杂,显著提升了电子密度,构建了增强的场效应以优化钙钛矿/C界面的钝化效果。叠层效率突破33%:单结宽带隙钙钛矿电池效率达23.20%,钙钛矿-硅叠层电池效率达33.10%,是目前报道的最高效率之一。
基于这些改进,研究团队成功制备出效率高达28.7%的钙钛矿/钙钛矿/硅三结太阳能电池,器件重复性显著提升。钙钛矿/钙钛矿/硅三结太阳能电池的性能该研究不仅为解决钙钛矿相不稳定这一长期难题提供了创新解决方案,还展示了分子工程在优化钙钛矿材料性能方面的巨大潜力。
钙钛矿/钙钛矿/硅三结太阳能电池在低成本下具有高功率输出的潜力,但其发展受限于钙钛矿的相不稳定性,影响了器件的可重复性和性能。最终,钙钛矿/钙钛矿/硅三结太阳能电池在1cm孔径面积上实现了28.7%的效率,并大幅提高了制备的可重复性。三结器件效率与稳定性突破:基于3A修饰的钙钛矿,三结叠层电池效率达28.7%,未封装器件在连续光照800小时后仍保持85%初始效率,为商业化多结光伏奠定基础。
文章概述为了在纳米纹理硅基底上制备厚度为1微米的高质量宽带隙钙钛矿薄膜,本文根据密度泛函理论和布朗斯特酸碱化学的原理设计了一种两性共平面共轭分子。ACCM中各官能团之间的诱导效应使其能够以多种形式存在。最终,钙钛矿/硅TSCs实现了31.57%效率。创新点分析1.结合DFT计算和布朗斯特酸碱理论,理性设计并合成了一种两性共面共轭分子。
ACCM中各官能团之间的诱导效应使其能够以多种形式存在。图1通过分子结构、pKa值对比、静电势分布和结合能计算,阐明了MBC分子的理性设计过程及其与钙钛矿组分的强相互作用机制。图1c的结合能计算证实MBC与FA+和PbI2的结合能均高于常用溶剂DMSO,表明其能有效调控结晶动力学。图2c的XRD图谱显示MBC提高了所有晶面的衍射强度。图3d和3e的稳态PLmapping显示目标样品的荧光分布更均匀,强度更高,表明其非辐射复合被有效抑制,费米能级分裂程度更大。
印度新能源和可再生能源部近日发布政策草案,计划自2028年6月起将太阳能硅片添加至批准的型号和制造商清单清单-III,要求政府支持的ALMM项目从指定清单采购相关产品,以推动国内太阳能全产业链发展。自生效日起,仅使用清单II电池且该电池采用清单III硅片的组件,才符合ALMM清单I资格。此次将硅片纳入ALMM清单的政策,有望进一步推动印度太阳能产业链国产化,巩固其行业地位。
随着全球对清洁能源需求的不断增长,太阳能作为一种可再生、无污染的能源受到了广泛关注。钙钛矿/硅叠层太阳能电池因其兼具高效率和低成本的潜力,成为了光伏领域的研究热点。传统单结硅太阳能电池虽然技术成熟,但其理论效率极限约为29%,难以满足日益增长的能源需求。而钙钛矿材料具有优异的光电性能,如高吸光系数、长载流子扩散长度等,将其与硅电池结合,有望突破单结电池的效率瓶颈。
通威股份光伏技术中心主导研发的钙钛矿-硅串联太阳能电池取得重大突破——经国家测量与测试技术研究院(NIMTT)与福建省计量研究所(FJIM)双认证,其全新电池结构实现了31.4%的转换效率,明显优于传统退火工艺对照组29.43%的效率表现。这一成果不仅刷新了行业纪录,也标志着我国在下一代高效光伏电池技术的产业化进程中迈出了关键一步。