氟化石墨烯量子点在生物医药领域的巨大应用前景但制备非常困难的问题,提出了以牺牲部分氟原子来提高氟化石墨烯反应活性的制备思路,通过设计亲核取代反应并结合后续的混合酸超声和水热处理等过程,成功实现了将微米级
材料,在太阳能电池中有着很好的应用前景。我们在理论计算中初步发现铂、铑这些金属材料能与石墨烯匹配,接下来将根据计算结果开展关键性研究。龚伟平说,研究这个项目是希望提高太阳能电池的光电转换率和延长其
碳纳米管表面的金属、金属氧化物纳米粒子的制备及应用;无过渡金属催化体系下芳香醛的绿色合成研究。合作开发新一代太阳能电池在惠州学院乌克兰国立技术大学联合研究院,来自乌克兰国立技术大学的专家谢尔盖科诺诺夫和
收率可达72.5%。氧化石墨烯作为非金属双功能催化剂对催化反应的理论研究和实际应用具有重要意义(Green Chem., 2016, DOI:10.1039/C5GC02794B)。 此外,该团队在
山西煤炭化学研究所山西省生物炼制工程技术研究中心研究员侯相林带领的研究团队,提出使用非金属功能化石墨烯材料作为HMF选择性氧化的催化剂。利用氧化石墨烯边缘未成对电子与羧基协同作用,同时以2,2,6,6
步骤,提高了电池电压。这一研究旨在保护环境的同时满足能源需求,解决社会复杂问题。4、分子石墨烯架构助力有机太阳能电池有机太阳能电池具有大规模、低成本发电的潜能,要克服的一个挑战是薄层电极顶部的差序
。慕尼黑工业大学物理和化学系以及普朗克高分子研究所的研究人员已经修改了染料分子,让他们作为自组装的分子网络构建块。通过氢键,对石墨烯涂层金刚石衬底的原子级平整表面分子进行自组装。暴露于光时,分子网络产生
,几乎占到了全球电池储能装机的一半。从新增装机的技术类型上看,90%以上的新增项目使用的都是锂离子电池。
在商业化方面,近两年储能产品已经开始全面走向应用。虽然日本厂商在2010年开始就已经推出
2015年也相继推出了类似储能产品。
技术方面,虽然2015年有许多关于储能电池突破的新闻,如各种金属空气电池,但从实际情况来看,这些新技术大多离应用还很遥远。目前具备产业化应用价值的储能技术主要
0.3GW,几乎占到了全球电池储能装机的一半。从新增装机的技术类型上看,90%以上的新增项目使用的都是锂离子电池。在商业化方面,近两年储能产品已经开始全面走向应用。虽然日本厂商在2010年开始就已经推出
在2015年也相继推出了类似储能产品。技术方面,虽然2015年有许多关于储能电池突破的新闻,如各种金属空气电池,但从实际情况来看,这些新技术大多离应用还很遥远。目前具备产业化应用价值的储能技术主要
增量空间?目前,电子用品市场上应用最广泛的是锂离子电池,特斯拉产品也用这种电池。锂离子电池属于二次电池,可以重复使用。1991年,索尼公司推出第一块商品化锂离子电池,并带来电池工业的一次革命。锂离子电池
了电池的性能。电池技术的突破依赖基础材料性能的提升,遗憾的是,材料鲜有重大突破。石墨烯材料被广为看好,不过,至今没有真正的产品可用。在隔膜方面,美国与日本拥有先进隔膜生产的技术专利,但这些研发成果都
)技术,能对石墨烯表面进行纹理操作,从而使石墨烯的吸光能力增加90%,未来有望应用于智能壁纸等物联网领域。科研人员表示他们成功证明石墨烯在未来能够被打造成为最轻的吸光材料。据悉,石墨烯一向以卓越的
(opto-MEMS)设备上的红外成像部分开展合作,通过纳米纹理化(nanotexturing)技术,能对石墨烯表面进行纹理操作,从而使石墨烯的吸光能力增加90%,未来有望应用于智能壁纸等物联网领域。石墨烯一向以
快速放量,确保公司LED业务稳健增长。加强石墨烯技术研发,以新能源为应用方向:石墨烯以其独特的结构和优异的材料性能而广泛应用于物理、化学及材料学等领域,其中被寄予厚望的应用之一是高光电转换效率的新一代