以输出电压。由于太阳光的透射和散射,绝大多数的雾霾以及阴雨天光照强度依然可以满足这个临界点。所以哪怕输出电流非常小,哪怕是零功率输出的系统,依然存在满载直流电压的危险。换言之,客观阴影对于电池输出电流
工程师的职业操守和专业技巧了,正所谓内行看门道,外行看热闹,客户是不会明白A机和B机在处理阴影遮盖上面有什么差别的。对于阴影情况复杂的项目,更宽的直流电压输入范围,多MPPT以及优化的追踪算法,这些都是
(power optimizer)。微逆设备是在超低电压(ELV)情况下完成直流电到交流电的逆变,通常要求串联的组件不超过两个。最近Altenergy Power System Inc (APS)研发
直流电注入的问题。澳大利亚标准(Australian Standard)对于逆变器直流的注入要求不超过0.5%的输出电流或5毫安,取偏大的值。传统的组串式逆变器通常都是接1串到2串的民用系统,所以
跨越式发展、用持续创新奠定国际一线品牌实力的有力见证。 从最初的直流电逆变需求到远程监控、运维互动,到储能,再到能量管理系统,光伏逆变器的这一功能扩展路径,正在成为固德威愈加清晰的逆变器技术
布置,以不同的光伏组件接线方式,混合接入一台500kW的逆变器后,模拟分析冬至日1月1日发电量差异,有必要指出的是,表2中的发电功率和发电量均是光伏方阵输出的直流电。 表2 1月1日550kW组件
微型逆变器技术能让光伏发电系统更安全、更高效、更智能,同时能最大化提高电站的整体系统收益。 微型逆变器系统中组件间相互并联,系统中不存在直流高压,保证了光伏系统直流电压控制在48V的人体安全电压范围内,即便
问题,且任一组件损坏将有可能导致系统输入电压降低或者系统瘫痪。 而AC module可基于独立光伏组件并网,即每个组件通过一个微型逆变器将组件的直流电能直接转换为交流电,再将大量彼此独立的交流模块
~80%。即使逆变器转换效率实际为98%,但是这个差额18~24%去哪里了?
有人可能怀疑是交直流电缆线损、直流汇流箱或交流配电柜损耗所导致,但是这部分损耗一般仅为1~3%左右,还是解释不了这么大的能量
的1%!
图13 单个组件遮挡对组串功率的影响
木桶效应是光伏电池串联必须导致的结果,但是从经济性考虑,组件串联提高直流电压后才可降低电缆、逆变器等造价。
当然创新是无止境的,国外也有
组件侧、逆变器侧、配电箱侧三个方面介绍了户用光伏系统的接地方式。 二、过温保护 在关注逆变器整体性能时,光伏人关注最多的往往是转化效率、最大直流电压、交流输出功率、防护等级等一系列惯常的问题
,不是常规产品所能满足的,也是造成系统故障最主要的原因;其次,直流汇流箱、逆变器中用到直流断路器作为系统的保护器件,较高高压直流下通断时产生的直流电弧难以熄灭,造成器件烧损甚至电站着的火情况也是时有发生
断路器的性能要求。
第二个痛点,解决直流拉弧。由于直流电流没有过零点,电流分断要求远比交流难度更大,对断路器的灭弧系统要求很高。在分断直流电流的过程中,一旦产生电弧没有分断,会在短时间内温度急剧升高
直流电(500千瓦交流电)的太阳能光伏系统。太阳能光伏系统安装在作为生物固体干燥床的溢流贮水池内,如图8所示。这些模块组件安装在一个高于最高水位的单轴跟踪器上,所有的电力装置都安装在通道的一侧,尽量
Canyon污水厂584千瓦直流电太阳能光伏系统
Ventura郡水务区,Moorpark再生水厂, 加州Moorpark
每天有来自9200名用户约220万加仑(约8330m3)的污水