新型压缩空气储能系统的示范运行;2016年底,在贵州完成国际首台10MW级新型压缩空气储能系统示范运行。据悉,相比1.5MW级压缩空气储能系统,10MW级压缩空气储能系统不仅在规模上提升了一个数量级,在
成本、效率和稳定性方面也有大幅改善。陈海生介绍,1.5MW级新型压缩空气储能系统单位千瓦成本为1万-1.5万元人民币,而10MW级的成本可降至6000元8000元,单位成本降低一半以上。从效率上看
化学电池。
研究内容:研究水系锂电池、凝胶锂电池、固态锂电池以及锂硫电池技术的电极材料及规模制备技术,新型钠、硫体系储能系统的关键技术,低电阻、高可靠性铅炭电池电极板的制备工艺技术,大容量机械储能(如飞
。
能源基础材料是能源技术发展的基石。燃煤发电机组和燃气轮机对高温材料、大型构件用金属材料提出了更高要求,安全先进核电的发展需要更可靠的核级材料,对可再生能源高效利用的需求促使新型高分子材料、新型
还记得我们给上海迪士尼推荐的能源地砖吗?从专业角度讲,这是一种新型电池飞轮电池(飞轮电池是20世纪90年代提出的新概念电池,它突破了化学电池的局限,用物理方法实现储能)。新型电池越来越多,也是
据美国伊利诺斯大学芝加哥分校网站消息,该校研究人员设计出一种新型太阳能电池,能直接把大气中的二氧化碳转化成碳氢化合物燃料,整个过程廉价而高效,有助于加快淘汰化石燃料。新电池和传统太阳能电池不同,后者
循环利用大气中的碳。他们集中研究了一族称为过渡金属硫化物(tmdcs)的纳米结构化合物,将它们和一种非常规离子液搭配作为电解液,制成一种电化学电池。用两个约18平方厘米大小的硅三联光伏电池作树叶来捕获阳光
《Nature》杂志上。
氧化还原液流电池与常规电池不同点在于并非由固体制成,而是一种溶解状态:电解质溶液存储在两级中,形成电池的正负极。在泵的作用下聚合物溶液转化为电化学电池,被还原或氧化
昂贵,溶液同时具有高度腐蚀性,因此必须使用特制膜,电池的寿命也很有限。耶拿大学研发的氧化还原液流电池则应用了创新型合成材料,其结构与有机玻璃和泡沫聚苯乙烯相似,但其中添加了功能组,使得材料能够接受或者
。1960年前后,H.Gerischer等人发现染料吸附在半导体上并在一定条件下能产生电流,这成为光电化学电池的重要研究基础。在随后的30年间,H.Gerischer等研究了各种染料敏化剂与半导体纳米晶间
于太阳能电池的新型材料,薄膜材料得到了深入快速的发展。
虽然多种薄膜材料已在实验室中成功制备,但其产业化应用却遭遇了制造成本高、工艺适用性差的瓶颈。前已述及,实验室合成薄膜材料常用的成膜技术随材料不同而差异
等人发现染料吸附在半导体上并在一定条件下能产生电流,这成为光电化学电池的重要研究基础。在随后的30年间,H.Gerischer等研究了各种染料敏化剂与半导体纳米晶间光敏化作用,但是研究产生的光电转换
染料敏化太阳能电池(DSC)作为P-N节光电装置在技术和经济上的可行性,还合成了其他可用于太阳能电池的新型材料,薄膜材料得到了深入快速的发展。虽然多种薄膜材料已在实验室中成功制备,但其产业化应用却遭遇了
或金属盐),而是以溶液的形式存在:电解质溶液分别存储在两个罐内,形成电池的正极和负极。通过借助泵,聚合物溶液转移至电化学电池,聚合物被电化学还原或氧化,从而进行电池充电或放电。为了防止电解质溶液相互
电解质溶液。不仅极其昂贵,而且具有高度腐蚀性,因此需要使用特定的膜。另外,电池采用新型合成材料,再也无需使用强酸;聚合物都可在水溶液中游泳了。新型电池使用简单、低成本的纤维素膜,避免使用有毒和昂贵的材料
德国耶拿大学的化学家成功研发了一款氧化还原液流电池(一种新型的大型电化学储能装置),能进行1000次的充电周期,可有效储存风能、太阳能等再生能源。同时这款电池以水和有机物为原料,相比于传统化学电池
宣告破产,对我们的反射镜玻璃供应也造成了一定影响,拖延了项目工期。新月沙丘电站的调试期确实超过了我们的预期,但这个过程是值得的,塔式熔盐技术是比较特别的创新型技术,我们从中获得了丰富的技术实践回报,这为
性能不能与CSP技术的储热带动汽轮机基荷发电相提并论。另外,PV化学电池储能与CSP的物理储热差别是很大的。CSP储热的效率很高(物理方式),我们研发的塔式熔盐储热系统的储热效率达到99.5%,而