当前位置:首页 > 光伏资讯 > 光伏科技 > 正文

液流电池技术取得突破:储存风能、太阳能将成为现实

来源:http://www.sciencedaily.com/re发布时间:2015-10-22 10:28:26

 德国耶拿大学的化学家成功研发了一款氧化还原液流电池(一种新型的大型电化学储能装置),能进行1000次的充电周期,可有效储存风能太阳能等再生能源。同时这款电池以水和有机物为原料,相比于传统化学电池其造价将大幅度下降。研究人员称这项突破将带来可再生能源的一次革命。

液流电池技术取得突破:储存风能、太阳能将成为现实

Synthetic batteries for the energy revolution

Chemists present an innovative redox-flow battery based on organic polymers and water

Jena (Germany) Sun and wind are important sources of renewable energy, but they suffer from natural fluctuations: In stormy weather or bright sunshine electricity produced exceeds demand, wheras clouds or a lull in the wind inevitably cause a power shortage. For continuity in electricity supply and stable power grids, energy storage devices will become essential. So-called redox-flow batteries are the most promising technology to solve this problem. However, they still have one crucial disadvantage: They require expensive materials and aggressive acids.

A team of researchers at the Friedrich Schiller University Jena (FSU Jena), in the Center for Energy and Environmental Chemistry (CEEC Jena) and the JenaBatteries GmbH (a spin-off of the University Jena), made a decisive step towards a redox-flow battery which is simple to handle, safe and economical at the same time: They developed a system on the basis of organic polymers and a harmless saline solution. "What's new and innovative about our battery is that it can be produced at much less cost, while nearly reaching the capacity of traditional metal and acid containing systems," Dr. Martin Hager says. The scientists present their battery technology in the current edition of the scientific journal Nature.

In contrast to conventional batteries, the electrodes of a redox-flow battery are not made of solid materials (e.g., metals or metal salts) but they come in a dissolved form: The electrolyte solutions are stored in two tanks, which form the positive and negative terminal of the battery. With the help of pumps the polymer solutions are transferred to an electrochemical cell, in which the polymers are electrochemically reduced or oxidized, thereby charging or discharging the battery. To prevent the electrolytes from intermixing, the cell is divided into two compartments by a membrane. "In these systems the amount of energy stored as well as the power rating can be individually adjusted. Moreover, hardly any self-discharge occurs," Martin Hager explains.

Traditional redox-flow systems mostly use the heavy metal vanadium, dissolved in sulphuric acid as electrolyte. "This is not only extremely expensive, but the solution is highly corrosive, so that a specific membrane has to be used and the life-span of the battery is limited," Hager points out. In the redox-flow battery of the Jena scientists, on the other hand, novel synthetic materials are used: In their core structure they resemble Plexiglas and Styrofoam (polystyrene), but functional groups have been added enabling the material to accept or donate electrons. No aggressive acids are necessary anymore; the polymers rather 'swim' in an aqueous solution. "Thus we are able to use a simple and low-cost cellulose membrane and avoid poisonous and expensive materials," Tobias Janoschka, first author of the new study, explains. "This polymer-based redox-flow battery is ideally suited as energy storage for large wind farms and photovoltaic power stations," Prof. Dr. Ulrich S. Schubert says. He is chair for Organic and Macromolecular Chemistry at the FSU Jena and director of the CEEC Jena, a unique energy research center run in collaboration with the Fraunhofer Institute for Ceramic Technologies and Systems Hermsdorf/Dresden (IKTS).

In first tests the redox-flow battery from Jena could withstand up to 10,000 charging cycles without losing a crucial amount of capacity. The energy density of the system presented in the study is ten watt-hours per liter. Yet, the scientists are already working on larger, more efficient systems. In addition to the fundamental research at the University, the chemists develop their system, within the framework of the start-up company JenaBatteries GmbH, towards marketable products.

 

特别声明:
凡本网注明来源: "索比光伏网或索比咨询"的所有作品,均为本网站www.solarbe.com合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。

经本网授权使用作品的,应在授权范围内使用,并注明来源: "索比光伏网或索比咨询"。违反上述声明者,本网将追究其相关法律责任。
推荐新闻
130欧元/MWh上限!荷兰政府宣布征收风光暴利税

130欧元/MWh上限!荷兰政府宣布征收风光暴利税

作为欧盟 "边际内征税"既定计划的一部分,荷兰政府本周宣布了130欧元/MWh(合136美元)的太阳能和风能发电利润上限,用于遏制过度的能源利润。

太阳能风能电价
2022-12-07
沙特启动3.3GW光伏风电项目

沙特启动3.3GW光伏风电项目

沙特阿拉伯启动了五个新的可再生能源项目以可持续地生产电力,因为世界上最大的石油出口国追求到 2050 年实现净零排放的目标。

可再生能源太阳能风能
2022-09-27
5650亿欧元大计划:2027年前,欧盟所有商业、公共建筑屋顶都将安装光伏

5650亿欧元大计划:2027年前,欧盟所有商业、公共建筑屋顶都将安装光伏

据彭博报道,欧盟将制定“能源系统数字化”计划,并将于下周正式公布。据悉,该计划将要求欧盟在 2030 年前在基础设施方面投资 5650 亿欧元(约 3.93 万亿元人民币),以实现其绿色计划,并结束对俄罗斯化石燃料的依赖。该文件提出了几项绿色行动计划:

太阳能风能能源市场
2022-09-24
哈电风能255亿元签约河北沧州:含3GW新能源项目投资

哈电风能255亿元签约河北沧州:含3GW新能源项目投资

9月14日,哈电风能有限公司与沧州渤海新区、黄骅市人民政府举行合作协议签订仪式。双方将携手打造一流的综合能源智慧园区、建立新能源产业集群,助力区域经济绿色低碳转型,同时,充分发挥黄骅市资源禀赋和哈电风能资源开发、装备制造优势,全力支持哈电风能投资开发建设陆上及海上风电场、光伏电站、储能等产业板块。

哈电风能新能源风电
2022-09-16
22.6%! Singfilm Solar打破钙钛矿组件效率世界纪录!

22.6%! Singfilm Solar打破钙钛矿组件效率世界纪录!

近日,专注于高效率钙钛矿太阳能电池研发与制造的Singfilm Solar宣布其自主研发的钙钛矿光伏电池组件达到了22.6%的稳态转换效率。此创新成果已被太阳能电池效率权威Martin Green Solar Cell Efficiency Tables (Version 64) 收录。这是新加坡团队的创新成果连续被Solar Cell Efficiency Table收入,Singfilm Solar是全球少数在不同尺寸及电池结构上均能打破权威全球效率纪录的团队,标志着公司在钙钛矿领域的领先地位,展现了

钙钛矿太阳能电池光伏产品
2024-07-04
香港城市大学最新Nature:钙钛矿光伏的水活化和热活化动态钝化

香港城市大学最新Nature:钙钛矿光伏的水活化和热活化动态钝化

香港城市大学冯宪平团队报告了一种使用受阻的尿素/硫代氨基甲酸酯键刘易斯酸碱材料(HUBLA)的活钝化策略,其中个与水的动态共价键和热活化特性可以动态愈合修复钙钛矿,以确保器件的性能和稳定性。

钙钛矿太阳能电池
2024-07-03
水电总院张益国:水风光一体化、光伏治沙等新业态不断涌现

水电总院张益国:水风光一体化、光伏治沙等新业态不断涌现

6月28日,《中国可再生能源发展报告2023年度》与《中国可再生能源工程造价管理报告2023年度》在北京发布。水电水利规划设计总院副院长张益国对《中国可再生能源发展报告2023年度》(以下简称《报告》)进行了介绍,他表示,2023年度报告考虑可再生能源多元协同和融合发展的趋势,改变了分品类纵向分析可再生能源发展的思路,从资源、开发、建设、利用、产业技术、政策、国际合作等视角,系统全面、重点突出地分析研究了我国可再生能源发展情况。

可再生能源太阳能电池技术光伏治沙
2024-07-03
北卡黄劲松最新Nature Energy:阻挡层强化提高反向偏压下钙钛矿太阳能电池的稳定性

北卡黄劲松最新Nature Energy:阻挡层强化提高反向偏压下钙钛矿太阳能电池的稳定性

近年来,钙钛矿太阳能电池在光、热、湿度及其组合下的稳定性得到了显著改善。然而,钙钛矿太阳能电池的反向偏压稳定性较差,限制了它们的实际应用。鉴于此,2024年7月1日美国北卡罗来纳大学教堂山分校黄劲松于Nature Energy刊发阻挡层强化提高反向偏压下钙钛矿太阳能电池的稳定性的研究成果,系统地研究了反向偏压下反式钙钛矿太阳能电池的衰减机制。在阴极侧,注入空穴氧化碘化物引发反向偏压诱导的衰减,然后产生的中性碘氧化金属电极(如铜),接着Cu+漂移到钙钛矿中,并被注入的电子还原,导致局部金属丝形成,从而器件击

钙钛矿太阳能电池
2024-07-02
北京低碳院决定联合支持第十一届中国国际储能大会召开

北京低碳院决定联合支持第十一届中国国际储能大会召开

中国储能网讯:经中国国际储能大会组委会确认,北京低碳清洁能源研究院(以下简称:低碳院)决定联合支持CIES2021年第十一届中国国际储能大会,本次大会主题为坚守储能安全底线,推动产业创新发展。会议将于2021年5月2

北京低碳清洁能源研究院第十一届中国国际储能大会液流电池技术
2021-04-25
返回索比光伏网首页 回到液流电池技术取得突破:储存风能、太阳能将成为现实上方
关闭
关闭