会阻碍底部界面处的载流子传输。鉴于此,南京工业大学王贞&王建浦在期刊《ACS
Energy Letters》发文,题为“Heterogeneous Nucleation-Induced
太阳能电池实现了25.3%的功率转换效率,并且热稳定性得到提高,在85°C下1100小时内保持其初始功率转换效率的81%。创新点:1.多齿配体诱导异质成核:通过引入多齿配体焦磷酸钾(PPH)在钙钛矿底部界面
了关键的技术支持和创新能力。硅 - 钙钛矿叠层太阳能电池作为下一代高效光伏器件,具有独特的优势。它结合了钙钛矿顶部电池和硅底部电池,能够捕获比传统单结电池更广泛的太阳光谱。具体而言,半透明的钙钛矿
阳离子在底部界面的聚集促进了通过巯基端基的原位聚合,在钙钛矿/SAM 界面形成POL-AVM 聚合物。这种聚合物增强了界面粘附力,调节钙钛矿结晶,并通过多个氢键强烈锚定有机阳离子来增强结构
团队利用计算流体动力学(CFD)模拟,对LAD的内部结构进行了优化设计,并3D打印了三种不同几何构型的模型进行对比研究:●LAD 1 (金字塔形):
底部为矩形开口,四壁为直角转折并向上逐渐收窄
。模拟与实验均表明,该结构易在薄膜表面形成“X”形低气流区域,导致干燥不均。●LAD 3 (漏斗形): 底部为圆形开口,单壁呈弧形。模拟与实验显示,该结构易在薄膜中心区域形成气流停滞区,影响中心区域的干燥
(PMDA)策略来设计底部界面并抑制相分离。多个重复膦酸基团在NiOx上形成的增强且均匀的锚定作用显著优化了底部界面,抑制了不利的界面反应,从而减轻了宽带隙钙钛矿的相分离。结果表明,PMDA修饰的宽带
对底部界面进行工程设计并抑制相分离。多个重复的膦酸基团在NiOx上增强并均匀锚定,显著抑制了不利的界面反应,减轻了宽带隙钙钛矿的相分离。因此,PMDA修饰的宽带隙钙钛矿太阳能电池(WBG
PSCs
和器件不稳定。基于此,华南理工大学严克友等人采用引入聚咔唑膦酸的聚合物多齿锚定(PMDA)策略来设计底部界面并抑制相分离。多个重复膦酸基团在NiOx上的强化和均匀锚固显著优化了底部界面,抑制了不利的界面
薄膜的归一化PL光谱。(g)抑制界面反应和相分离的机理示意图。图3.
(a,d)沉积在对照和PMDA改性的NiOx薄膜上的WBG钙钛矿薄膜的底部SEM、(b,e)横截面SEM图像和(c,f)PL
全钙钛矿串联太阳能电池(TSCs)由宽带隙(WBG, 1.7-1.8 eV)的顶部电池与窄带隙(NBG, 1.2-1.3 eV)的底部电池组成,被认为是有望打破单结钙钛矿太阳能电池(PSCs
近日,Qcells公司宣布其生产的钙钛矿/硅串联太阳能电池组件成功通过了太阳能电池可靠性的几项关键压力测试。据了解,此次受测组件在顶部电池采用了Qcells公司内部的钙钛矿技术,而底部电池则运用
城市大学研究团队制造的可弯曲钙钛矿 -
硅叠层太阳能电池,结构独特且复杂。它由底部可弯曲的薄膜异质结电池和顶部通过低温工艺制造以防损坏的钙钛矿电池组成。这种分层设计结合了两种电池的优势,既保证了电池的
可弯曲特性,又提升了整体的转换效率。在底部电池的处理上,研究团队采用了氢氧化钾(KOH)蚀刻技术,对原本转换效率为21.1%的电池进行减薄处理。这一过程不仅需要精湛的技术,更需要精确的控制,以确保
,5000rpm 30s旋涂,100℃退火5 min;4.蒸镀1 nm LiF, 30 nm C60;8 nm BCP;100 nm Ag。Tandem device:1. 将具有20 nm ITO复合层的Si底部