&Bo He研究背景钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已突破26.5%,逐步逼近最先进的晶体硅太阳能电池水平。在反式钙钛矿电池性能提升过程中,有机空穴选择性自组装分子(SAMs)发挥
:当前主流的SAMs设计策略——包括π-共轭扩展、共轭连接桥构建和稠环结构形成——主要通过增强共轭和电子离域来提升导电性与稳定性。2、SAMs聚集问题:然而共轭体系的强化往往引发分子堆叠,制约了大面积
问题。正信光电推出的PVT
(Photovoltaic-Thermal)组件所配置的电热一体化系统,正是为解决这一核心痛点而生。它将光伏发电与太阳能热能采集功能集成于同一块组件,实现“发电+产热
”双重输出,在同等面积下创造出更高能源收益,是面向多能源需求场景的高效化、集成化解决方案。正信PVT组件通过高效导热结构,充分回收光伏运行过程中产生的余热,并将热能高效传输至热泵系统。组件不仅能持续输出
高性能柔性太阳能电池需要整个器件结构的协同优化。文章详细分析了各功能层的材料选择和设计原则:1. 柔性基底:主要分为三类聚合物基底(PET、PEN):成本低、柔韧性好,但耐温性较差(150°C)柔性玻璃
钙钛矿太阳能技术有望成为未来能源结构中的重要组成部分,为应对气候变化和能源危机提供新的解决方案。文献分享:Transition of Perovskite Solar Technologies
自组装单分子层(SAM)作为空穴传输层,显著提升了钙钛矿太阳能电池(PSC)的功率转换效率(PCE),但形成均匀、致密且稳定的SAM仍具挑战性。本研究北京大学赵清、华中科技大学刘宗豪和新加坡国立大学
在ITO表面自发形成纳米抗反射结构,提升光子透过率。最终,基于该策略的PSC实现了26.6%的PCE,并在65°C下连续运行2800小时后仍保持96%的初始效率(ISOS-L-2协议)。研究亮点:超快
的太阳能电池器件结构,提升光电转换效率;信息学科人才引入大数据与人工智能技术,助力材料筛选与工艺优化。团队创新性地采用“平台标准化,工艺流程与原创技术方案的双螺旋协同创新”模式。一方面,打造标准化的
“27.32%!这一目标我们终于实现了!”日前,海南大学物理与光电工程学院的实验室内响起了欢呼声。该校新能源光电材料与器件团队自主研发的钙钛矿太阳能电池,经中国国家光伏产业计量测试中心认证,稳态
在钙钛矿太阳能电池(PSCs)不断迈向高效率和商业化的进程中,空穴传输层(HTLs)性能的优化尤为关键。近期,研究团队开发出基于氧化镍(NiOx)和钴酞菁(CoPc)的双层空穴传输结构,在提升
,导致载流子分离效率不高,成为进一步提升PSCs性能的瓶颈。为此,研究者们尝试在NiOx表面引入功能材料构建双层HTLs结构,以优化能级对齐、增强电荷提取能力和界面稳定性。主要研究内容本研究采用两种
1.19亿千瓦时,单日最高发电量1031万千瓦时。当前我国风电光伏总装机已超过火电。国家能源局6月23日最新数据显示,截至5月底,全国累计发电装机容量36.1亿千瓦,同比增长18.8%。其中,太阳能
电网已基本实现了互联互通,电网网架结构、配置能力全面跨越式提升,省间输电能力超过3亿千瓦。通过加快全国统一电力市场建设,常态化开展跨省跨区绿电交易,进一步推动了电力资源在全国范围的优化配置。与此同时
钙钛矿量子点因其优异的光电特性和溶液法制备的便利性,在太阳能电池和发光二极管领域展现出巨大的应用潜力。然而,在高温热注入合成过程中,配体之间的酰胺化反应会导致PbX2沉淀,进而引发缺陷形成,降低
结果表明,合成的CsPbI3量子点缺陷密度降低,PLQY提高,载流子传输能力增强,基于该量子点制备的LED和太阳能电池性能显著提升,分别达到28.71%的最大外量子效率和16.20%的最高功率转换效率
或火星科研站(中国的国际月球科研站计划和美国的阿尔忒弥斯任务)等任务也需要强大的能源支持。商业航天的网络体系结构以“卫星-地面-用户”三层构建为核心,具备强覆盖、高并发、快速部署的能力。以
网络快速连接。空间环境对太阳能电池的特殊要求空间光伏组件需满足以下要求:(1)能耐受恶劣的空间环境;(2)重量轻;(3)高功率转换效率(Power Conversion
Efficiency,PCE
》中提出“创新发展新能源直供电”。尽管山西、山东、内蒙古、江苏等地区就绿电直连出台了相关文件,但对其定义和执行细则尚未有明确的文件支撑。650号文从国家层面明确了绿电直连的定义,即风电、太阳能
。另外,申报容量与费用直接挂钩,契合市场化改革方向。求解成本边界重塑绿电直连经济性绿电直连政策的落地,为企业优化用能结构开辟了新的路径——新增负荷企业可降低用能成本、存量自备电厂企业可实现低碳甚至零碳运营