无机钙钛矿因其良好的热稳定性及光照下抑制相分离的特性,成为硅基叠层太阳能电池理想的顶电池材料。本文南开大学王鹏阳和张晓丹等人开发了一种弱p型材料——乙二胺乙酸甲胺与氧化镍结合作为空穴选择性层。基于此,CsPbI33无机钙钛矿太阳能电池实现了21.52%的光电转换效率,无机钙钛矿/硅叠层电池更是创下27.92%的纪录。高效率记录:单结无机钙钛矿电池效率达21.52%,叠层电池效率突破27.92%,均为当前报道的最高水平。
近年来,钙钛矿/硅叠层太阳能电池因其低成本高效率逐渐成为研究热点。尽管其光电转换效率已高达34.6%,但这些高效叠层太阳能电池最有效的设计是基于非商用晶硅底电池,其正面经过抛光或具有亚微米级纹理结构,以确保钙钛矿薄膜高效沉积。在自然环境条件下制备的全织构化钙钛矿/硅叠层器件的有效面积为19.9平方厘米,获得了28.28%的高效率。这项工作为大面积钙钛矿/晶硅叠层太阳能电池的商业化生产开辟了一条新途径。
实验结果证实,双层钝化策略能够精确调节钙钛矿的能级对齐,降低缺陷密度,并抑制界面非辐射复合。结合AlOx/PDAI2处理的整体钙钛矿/硅叠层太阳能电池实现了31.6%的光电转换效率,使用的是采用QCELLSQ.ANTUM技术制造的工业硅底电池。基于这一研究方法,研究人员提出了一种针对钙钛矿/硅叠层太阳能电池特定挑战的双层钝化策略。通过利用AlOx和PDAI2的互补优势,双层钝化策略同时解决了能量损失和稳定性的问题,在不影响离子传输动力学的前提下优化了界面特性。
溶液法制备的钙钛矿材料,结合现有硅基设施用于钙钛矿/硅叠层太阳能电池,因其低成本和高效率而备受关注。
减少钙钛矿/电子传输层界面的非辐射复合是实现高性能稳定钙钛矿/硅叠层太阳能电池的关键挑战。本研究分析了能量损失,并设计了双层钝化策略以提升叠层电池的性能与耐久性。实验结果表明,该双层钝化策略可精确调控钙钛矿能级排列、降低缺陷密度并抑制界面非辐射复合。采用AlO/PDAI处理的单片式钙钛矿/硅叠层太阳能电池,在使用基于QCELLSQ.ANTUM技术制备的工业硅底电池上,实现了31.6%的光电转换效率。
宽带隙钙钛矿在实现高效钙钛矿/硅叠层太阳能电池方面潜力巨大,然而钙钛矿/电子选择性接触界面的能量损失仍是限制其效率提升的关键瓶颈。更重要的是,该笼状阳离子可诱导形成面内取向的纯相准二维钙钛矿,并表现出显著铁电效应,通过提升表面功函数促进载流子分离与提取。
倒置钙钛矿太阳能电池因钙钛矿表面及功能层间的非辐射复合而面临性能限制。两者协同使钙钛矿准费米能级分裂均质提升约100mV。基于此,两端钙钛矿-硅叠层电池在1cm器件上实现认证开路电压2V,效率超过31%。该钝化策略具备良好扩展性,60cm活性面积的均质钝化器件获得认证效率28.9%。叠层器件高性能与稳定性兼顾:1cm钙钛矿-硅叠层电池认证效率达31.6%,开路电压突破2V,并在暗态氮气环境中展现良好稳定性,为大面积产业化提供可靠路径。
本文浙江大学杭鹏杰和余学功等人提出了一种在二维钙钛矿中间层中引入n型调控的策略,通过将SbCl掺入PEAI基二维钙钛矿中,实现了2D层的n型掺杂,显著提升了电子密度,构建了增强的场效应以优化钙钛矿/C界面的钝化效果。叠层效率突破33%:单结宽带隙钙钛矿电池效率达23.20%,钙钛矿-硅叠层电池效率达33.10%,是目前报道的最高效率之一。
基于这些改进,研究团队成功制备出效率高达28.7%的钙钛矿/钙钛矿/硅三结太阳能电池,器件重复性显著提升。钙钛矿/钙钛矿/硅三结太阳能电池的性能该研究不仅为解决钙钛矿相不稳定这一长期难题提供了创新解决方案,还展示了分子工程在优化钙钛矿材料性能方面的巨大潜力。
钙钛矿/钙钛矿/硅三结太阳能电池在低成本下具有高功率输出的潜力,但其发展受限于钙钛矿的相不稳定性,影响了器件的可重复性和性能。最终,钙钛矿/钙钛矿/硅三结太阳能电池在1cm孔径面积上实现了28.7%的效率,并大幅提高了制备的可重复性。三结器件效率与稳定性突破:基于3A修饰的钙钛矿,三结叠层电池效率达28.7%,未封装器件在连续光照800小时后仍保持85%初始效率,为商业化多结光伏奠定基础。