界面层工程来提高有机太阳能电池效率的新方法。推动产业化进程:这种混合阴极界面层技术为有机太阳能电池的商业化和大规模生产提供了新的可能性,有助于推动可再生能源技术的发展和应用。科学贡献:该研究为理解和设计
晶硅太阳能电池由于带隙约为1.1 eV,其肖克利–奎塞尔(SQ)极限效率约为30%。当前世界纪录的背接触异质结电池效率已达27.3%,接近理论极限。然而常规单结电池存在严重的光谱失配损失:高能光子
范围和改善材料工艺。在光伏中的应用场景光子倍增材料已在多种太阳能电池中开展了实验与模拟研究,并取得了提高电池性能的效果。图2总结了部分典型应用案例:左图(a)所示为染料敏化电池中在电极上涂覆的光子下
有机太阳能电池(OSCs)凭借其机械柔性优势,为可穿戴设备提供了独特的应用前景。鉴于此,青岛大学材料科学与工程学院/功能染料与技术研究院王逸凡副教授、薄志山教授、刘亚辉教授团队与美国西北
不同给/受体材料的兼容性(当前仅在D18:L8BO/PM6:L8BO验证)。2.长期稳定性研究需评估超柔性OSC在复杂形变(弯折+拉伸)、湿热环境下的器件退化机制,优化封装策略以实现10年服役寿命。3.产业化工艺开发研究CR在大面积卷对卷印刷中的分散均一性控制,开发低温溶液加工工艺以降低制造成本。
电压损失的新方法。推动产业化进程:这种3D结构电子受体技术为有机太阳能电池的商业化和大规模生产提供了新的可能性,有助于推动可再生能源技术的发展和应用。科学贡献:该研究为理解和设计高效率、低电压损失的有机
Voltage Loss”为题发表在顶级期刊Advanced
Materials 上。研究亮点:三维结构电子受体:开发了一种新型3D结构的电子受体,有助于提高有机太阳能电池的性能。高PLQY和适度结晶度
在推动钙钛矿太阳能电池产业化的征程中,如何制备高质量的大颗粒、低缺陷的宽带隙钙钛矿薄膜,一直是效率提升和稳定性改善的核心难题。近日,研究团队提出了一种简便有效的溶剂气相熏蒸策略(DMSO
fumigation),在不更改前驱体配方的情况下,显著改善了宽带隙钙钛矿的结晶过程,制备出高质量薄膜,成功实现了30.9%的钙钛矿/硅(TOPCon)叠层电池转换效率(认证效率30.83%),迈出了产业化
(SFOS)技术,达到40%效率突破。一道新能CTO、中央研究院院长宋登元博士,中央研究院副院长、研发总经理章康平先生等与Ned教授团队等围绕SFOS高效电池技术研发进展与产业化推进进行了深入的交流。宋
博士与Ned教授在签字仪式照片前合影TOPCon5.0助力SFOS实现在宋登元博士等的陪同下,Ned博士一行首先参观了中央研究院实验室与研发线,深入了解SFOS项目未来产业化落地的支撑情况。参观过程中
近日,第十八届国际太阳能光伏与智慧能源大会暨展览会(以下简称“SNEC”)在上海圆满落幕。作为全球光伏领域的一年一度的行业盛会,SNEC聚焦政策战略方向、创新产品发布、前沿技术突破、产业链协同
:0BB技术加速行业向低成本、高性价比的产业化方向迈进在第十二届光伏聚合物国际大会上,戴建方先生发表《DAON
高效组件进展:0BB技术及当下的提效方案》主题报告。他表示,在光伏组件技术迭代浪潮中
新能源与清华大学于2025年4月申请了“一种宽带隙钙钛矿太阳能电池及其制备方法”的专利,公开号CN120166843A,申请日期为2025年04月。专利摘要显示,该发明公开了一种宽带隙钙钛矿太阳能
电池及其制备方法,涉及太阳能电池技术领域,宽带隙钙钛矿太阳能电池包括宽带隙钙钛矿层与双钝化层;双钝化层位于宽带隙钙钛矿层上方;双钝化层包括聚(2‑乙基‑2‑恶唑啉)与苯乙胺盐。双钝化层的制备方法,包括以下
其他钙钛矿基光电器件不稳定的问题,为钙钛矿太阳能电池中离子迁移的抑制提供了一种普适性策略,有望推动钙钛矿光伏技术的产业化进程。
记者日前从昆明理工大学获悉,该校材料科学与工程学院陈江照教授和何冬梅教授团队在高性能钙钛矿太阳能电池领域取得重要进展,相关成果近日发表于国际材料学期刊《先进材料》上。金属卤化物钙钛矿太阳能电池是一种
2025年6月11日,上海SNEC(2025)国际太阳能光伏与智慧能源大会现场,光伏行业迎来一项开创性突破。协鑫光电自主研发的大尺寸叠层钙钛矿光伏组件,在全球顶尖检测认证机构德国莱茵TÜV大中华区
(简称“TÜV莱茵”)的严格测试下,率先获得基于IEC
61730标准的光伏组件安全认证。协鑫光电董事长范斌博士与德国莱茵TÜV集团全球电力电子产品服务副总裁兼大中华区太阳能与商业产品服务副总裁李卫