特殊性,被引入制备过程。 离子液体独特的阴离子和阳离子结构能够在溶液中形成庞大的氢键网络,同时,有机阴离子与金属卤化物形成螯合物来调节前驱体溶液的性质。其独特的化学作用能够有效调控钙钛矿的结晶动力学
结构能够在溶液中形成庞大的氢键网络,同时,有机阴离子与金属卤化物形成螯合物来调节前驱体溶液的性质。其独特的化学作用能够有效调控钙钛矿的结晶动力学过程,从而生长出高质量的钙钛矿薄膜。论文共同第一作者芦荟说
据外媒报道,杜克大学的研究人员揭示了隐藏已久的分子动力学,这些分子动力学为太阳能和热能应用提供了理想的特性,这种材料被称为卤化物钙钛矿。这些材料如何创造和传输电能的一个关键因素实际上取决于其原子晶格
以类似铰链的方式扭曲和转动的方式。该成果将帮助材料科学家们以环保的方式为这些材料的广泛应用定制化学配方。
该成果于3月15日在线发表在《自然材料》杂志上。
人们对卤化物钙钛矿在
串联装置效能优越的证据。 钙钛矿太阳能电池,是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的第三代太阳能电池,具有成本低廉、光电转换效率高、商业潜力巨大等让人无法忽视的特点。 此次研究团队
和Cl的准确位置,并将其与薄膜增强的稳定性相关联。研究结果为目前关于卤化物掺入的争论提供了答案,并证明了其对器件稳定性的直接影响。 戚亚冰团队认为,决定钙钛矿光伏技术商业化的
基于金属卤化物钙钛矿的太阳能电池被认为是最具发展潜力的光伏技术,但它们受到非辐射复合的困扰,这是一种不良的电子级过程,会降低效率并加剧热损失。 保秦烨团队与合作者寻求了一种天然的、基于森林材料的廉价
(perovskite solar cells),是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于第三代太阳能电池,也称作新概念太阳能电池。根据PV-Tech报道,2020年12月24日美国国家
CsPbBr3单晶薄膜。同时,研究发现这一策略还适用于MAPbBr3、FAPbBr3等卤化物钙钛矿单晶薄膜的制备,这为生长超薄大尺寸钙钛矿单晶薄膜提供了一种新思路。
。 首先,选择合适的清洁有机金属卤化物来取代剧毒的含铅有机金属卤化物。其次,要进一步提高钙钛矿太阳能电池的光电转换效率,设计新型结构的器件也是非常关键的一步。最后,只有解决了钙钛矿太阳能电池器件大面积
单一混合卤化物钙钛矿晶体的扫描共聚焦显微镜图片显示,发射光包括混合(绿色)和分离(红色)区域。
荧光图像同时记录下了两个单独的波长区域。左图为540~570 nm处的荧光发射
,右图为660~690 nm处的荧光发射。
金属卤化物钙钛矿是一类重要的有机-无机杂化材料。这类材料为高效太阳能光伏发电、光发射装置和快速X射线探测器的制造提供了廉价、灵活的选择。
虽然钙钛矿材料