Electroluminescence Devices 为题在线发表于国际顶级期刊ACS Nano (IF=13.3),论文第一作者为潘教授指导的博士生胡学鹿。近年来,有机无机杂化卤化物钙钛矿材料作为直接带隙半导体材料,因具有载流子迁移
通过改进钙钛矿太阳能电池金属卤化物吸光材料的制造方法,韩国科学家使这种类型太阳能电池的能量转化效率达到22.1%,而此前这类电池转化效率的最高纪录是20.1%。 钙钛矿太阳能电池的吸光材料通常采用
索比光伏网讯:通过改进钙钛矿太阳能电池金属卤化物吸光材料的制造方法,韩国科学家使这种类型太阳能电池的能量转化效率达到22.1%,而此前这类电池转化效率的最高纪录是20.1%。钙钛矿太阳能电池的吸光
材料通常采用铅或镍的卤化物,因其晶体结构与钙钛矿类似而得名。这类吸光材料光电性能优良、制造成本较低,是近年来太阳能发电领域的研究热点。韩国蔚山国立科技学院发布新闻公报说,新方法由该机构与韩国化学技术研究
索比光伏网讯:通过改进钙钛矿太阳能电池金属卤化物吸光材料的制造方法,韩国科学家使这种类型太阳能电池的能量转化效率达到22.1%,而此前这类电池转化效率的最高纪录是20.1%。钙钛矿太阳能电池的吸光
材料通常采用铅或镍的卤化物,因其晶体结构与钙钛矿类似而得名。这类吸光材料光电性能优良、制造成本较低,是近年来太阳能发电领域的研究热点。韩国蔚山国立科技学院发布新闻公报说,新方法由该机构与韩国化学技术研究
索比光伏网讯:太阳能电池正逐渐走向更高效。但是用于太阳能电池最新、最具前景的吸光材料,有机铅卤化物钙钛矿,并不持久。在仅仅几天之后,就失去了效率优势。伦敦帝国学院的研究人员已经确认了引起钙钛矿电池
迅速降解的机制,该团队的发现将为更高效、持久的太阳能电池铺平道路。伦敦帝国学院前期的研究表明,超氧化物能够破坏钙钛矿材料。现在,伦敦帝国学院的研究人员已经发现了超氧化物形成和破坏的机理。当光线照射在
正逐渐走向更高效。但是用于太阳能电池最新、最具前景的吸光材料,有机铅卤化物钙钛矿,并不持久。在仅仅几天之后,就失去了效率优势。伦敦帝国学院的研究人员已经确认了引起钙钛矿电池迅速降解的机制,该团队的
发现将为更高效、持久的太阳能电池铺平道路。伦敦帝国学院前期的研究表明,超氧化物能够破坏钙钛矿材料。现在,伦敦帝国学院的研究人员已经发现了超氧化物形成和破坏的机理。当光线照射在钙钛矿上时,释放的电子将与氧
更新。
所谓的钙钛矿光伏材料是一种人工合成的有机-无机杂化的金属卤化物。由于其晶格结构与自然界中的钙钛矿一致,故而得名。
目前,该成果已获得位于美国蒙大拿州的国际测试中心Newport公司
组件效率进而提高到了16.0%,这个效率已经接近市面上常见硅材料组件的转换效率。纤纳光电负责人姚冀众说。
据了解,钙钛矿太阳能电池发现于2009年,当时的光电转换效率只有3.8%。2011年以后,随着
tables中更新。所谓的钙钛矿光伏材料是一种人工合成的有机-无机杂化的金属卤化物。由于其晶格结构与自然界中的钙钛矿一致,故而得名。 目前,该成果已获得位于美国蒙大拿州的国际测试中心Newport公司的
提高到了16%,这个效率已经接近市面上常见硅材料组件的转换效率。纤纳光电负责人姚冀众说。 据了解,钙钛矿太阳能电池发现于2009年,当时的光电转换效率只有3.8%。2011年以后,随着学术界关注度的提升
钙钛矿型太阳能电池是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,。近几年,钙钛矿太阳能电池的研究不断刷新转化效率新纪录。其具有优异的太阳能-电能转换效率(PCE),且制造成
索比光伏网讯:钙钛矿型太阳能电池(perovskite solar cells),是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,近几年,钙钛矿(Perovskite)太阳能电池的研究