卤化物材料

卤化物材料,索比光伏网为您提供卤化物材料相关内容,让您快速了解卤化物材料最新资讯信息。关于卤化物材料更多相关信息,可关注索比光伏网。

钙钛矿电池:“搅局者”将至来源:《能源评论》杂志 发布时间:2019-06-20 16:51:06

金属卤化物半导体作为吸光材料的太阳能电池,属于第三代新概念太阳能电池之一,具有光电转换效率特别高、成本低的特点,目前实验室转换率水平最高接近30%,是目前已经发现的实验室光电转换效率最高的太阳能电池
一种通过光电效应或者光化学反应直接把光能转化成电能的装置。从结构上来看,太阳能电池一般是由很多层材料堆积起来的,其中起到光吸收作用的层叫做吸收层。太阳能电池也按照吸收层的材料特性来命名,比如晶体硅

无机钙钛矿电池性能调控方面取得新进展来源:中国科学院 发布时间:2019-05-20 12:33:24

采用有机金属卤化物作吸光材料,这也是钙钛矿太阳能电池的核心材料,代替了染料敏化太阳能电池中的染料分子和有机薄膜太阳能电池中的吸光层。目前在高效钙钛矿太阳能电池中,最常见的钙钛矿材料为碘化铅甲胺

无机钙钛矿电池性能调控方面取得新进展!来源:中国科学院网站 发布时间:2019-05-20 09:24:35

太阳能电池不同,钙钛矿太阳能电池采用有机金属卤化物作吸光材料,这也是钙钛矿太阳能电池的核心材料,代替了染料敏化太阳能电池中的染料分子和有机薄膜太阳能电池中的吸光层。目前在高效钙钛矿太阳能电池中,最常见的

这种光伏材料或将代替晶硅,成为太阳能电池“新宠”来源:前沿材料 发布时间:2019-04-29 09:34:30

潜力。因此钙钛矿成为目前最为先进的一种光伏材料。 钙钛矿简介 与传统的太阳能电池不同,钙钛矿太阳能电池采用有机金属卤化物作吸光材料,这也是钙钛矿太阳能电池的核心材料,代替了染料敏化太阳能电池中的

钙钛矿或将代替晶硅,成为太阳能电池“新宠”来源:前沿材料 发布时间:2019-04-29 08:59:57

潜力。因此钙钛矿成为目前最为先进的一种光伏材料。 钙钛矿简介 与传统的太阳能电池不同,钙钛矿太阳能电池采用有机金属卤化物作吸光材料,这也是钙钛矿太阳能电池的核心材料,代替了染料敏化太阳能电池中的

欧盟染料敏华太阳能电池研发状况来源:科技部 发布时间:2019-04-28 16:26:49

欧洲研发团队,采用相同技术,利用具有晶体物理结构的氧化钙钛矿开发的金属卤化物材料,进一步将光电转化效率提高到20%。鉴于目前世界太阳能发电市场发展的主要制约因素为成本高和光电转化效率低,DSCs技术的
染料敏华太阳能电池(Dye-Sensitized SolarCells,DSCs)利用诸如钌(Ruthenium)和碘(Iodine)等光敏材料,模仿植物叶绿素的光合作用,将太阳能光线转化为电能

新研究或大幅提高钙钛矿电池寿命来源:科技日报 发布时间:2019-04-24 16:11:31

在保证转换效率的基础上极大地提高电池寿命,是钙钛矿太阳能电池研究者的目标。日前,北京大学工学院材料科学与工程系周欢萍课题组和化学与分子工程学院严纯华院士课题组的合作成果利用Eu3+/Eu2+氧化还原
近理论上限,成本难再下降。因此,兼顾成本和效率优势的钙钛矿太阳能电池成为该领域最大研究热门。 钙钛矿太阳能电池,采用具有钙钛矿晶体结构的有机无机杂化的金属卤化物作为吸光层,自2009年以来,因制备方式简单

绘制更便宜的柔性太阳能电池的路径来源:生物帮 发布时间:2019-04-24 15:56:03

太阳能电池具有很多潜在优势,因为它们非常轻,可以用柔性塑料基板制造,佐治亚理工学院材料科学与工程学院助理教授Juan-Pablo Correa-Baena说。然而,为了能够在市场上与硅基太阳能电池竞争
大卫芬宁说:钙钛矿可以真正改变太阳能游戏。他们有可能在不放弃业绩的情况下降低成本。但是,从根本上学习这些材料还有很多东西要做。 要了解钙钛矿晶体,将其晶体结构视为三元组是有帮助的。三元组的一部分通常由

ACS Energy Lettters:新型无毒钛基双钙钛矿型光伏材料的预测和验证来源:材料牛 发布时间:2019-03-27 11:54:41

钙钛矿卤化物材料进行了深入研究。通过计算这些钙钛矿材料的带隙和光吸收谱,发现Cs2TiI6-xBrx钙钛矿具有适宜的准直接带隙(在1.0-1.8 eV的最佳光转换效率范围内)以及非常好的光学吸收性
能。进一步的研究发现它们也具有良好的稳定性和载流子迁移性能。基本以上的预测,我们合成了一系列的无铅含钛双钙钛矿卤化物材料。其具有良好的稳定性以及吸光性能。这些优良的性质使这种材料很有希望成为优异的太阳能电池吸收层材料

卤化物钙钛矿离子传导的可调光电效应及其对光分解的影响来源:材料牛 发布时间:2019-03-27 11:53:18

,表明光激发增强了几个数量级的甲基碘化铅,原型金属卤化物光伏 材料。提供了这种意外现象的基本原理,并表明它直接导致钙钛矿迄今未被考虑的光分解路径。相关成果以题为Large tunable
该研究通过各种独立的方法明确表明,能隙高于间隙的照明在MAPI中增加了eon和ion数量级。除了对卤化物钙钛矿的性能和稳定性带来的严重影响之外,这种前所未有的效应对于固体的化学和物理学具有重要意义,甚至可能为新一代智能器件的生成铺平道路。