在钙钛矿太阳能电池(PSCs)不断迈向高效率和商业化的进程中,空穴传输层(HTLs)性能的优化尤为关键。近期,研究团队开发出基于氧化镍(NiOx)和钴酞菁(CoPc)的双层空穴传输结构,在提升
钙钛矿电池效率与稳定性方面取得了重要突破。研究背景NiOx 作为一种无机HTL材料,具备带隙大(3.5 eV)、价带位置合适(VBM ≈ 5.4
eV)及化学稳定性强等优点。然而,其本征空穴传输能力较差
,组件级光电转换效率达17.1%。创新的模块化安装系统突破行业惯例,大大提升安装效率,实现“即装即发”的建筑一体化施工革新。目前,该产品已通过IEC 61215、IEC
61730等多项国际认证
华宝新能“iF设计奖”获奖产品——华宝新能美学曲面光伏瓦(Jackery Solar Curved Tile)技术层面,华宝新能美学曲面光伏瓦搭载XBC电池技术,实现25%的电池转换效率,叠加多曲面结构设计
。随着产线量产与产业链优化,协鑫钙钛矿叠层组件的成本、效率及稳定性优势将进一步凸显,其平准化度电成本(LCOE)有望逐步与晶硅技术持平。回溯技术演进历程,协鑫光电自2021年建成全球首条钙钛矿兆瓦级中试
技术优势向商业化应用转化的关键一步。从行业视角看,钙钛矿电池作为第三代新型太阳能电池,具备光电转换效率高、制备工艺短、能耗与成本双低等显著优势。协鑫光电这一规模化产业基地的落地,不仅为全球钙钛矿光伏产业提供了商业化示范样本,更将推动全球新能源产业向高效、低碳、可持续方向加速迈进。
钙钛矿量子点因其优异的光电特性和溶液法制备的便利性,在太阳能电池和发光二极管领域展现出巨大的应用潜力。然而,在高温热注入合成过程中,配体之间的酰胺化反应会导致PbX2沉淀,进而引发缺陷形成,降低
载流子传输效率,限制了器件性能。本文提出了一种酰胺化延迟合成策略,通过引入共价金属卤化物来中断酰胺化反应,释放自由酸/胺,与PbX2配位形成规整的铅卤化物八面体,从而有效抑制PbX2沉淀和缺陷形成。实验
添加氨基酸盐,研究人员成功提高了薄膜质量和光电性能,创造了三结器件28.7%和四结器件27.9%的效率新纪录。尽管如此,要实现37%的实用效率潜力(对应1.2、1.5和2.0eV的理想带隙)仍存在显著
,科研团队改善了阴极界面层的性能。效率突破:采用这种混合阴极界面层的有机太阳能电池实现了超过20%的光电转换效率。稳定性增强:优化后的电池在长期运行中展现出更好的稳定性。研究内容:该研究专注于通过阴极
界面层工程来提高有机太阳能电池的性能。科研团队通过精确控制阴极界面层的组成和结构,实现了对电荷提取和传输过程的优化,从而提高了电池的光电转换效率和稳定性。研究意义:性能提升:这项工作提供了一种通过阴极
光子,潜在地提高光电转化效率。光子倍增与量子裁剪原理量子裁剪(Photon
Cutting或Downconversion)是指一种吸收一个高能光子并发射两个(或以上)低能光子的非线性光学过程,其总
转换层;中图(b)为钙钛矿电池中光子上转换/下转换层的示意;右图(c)为晶硅太阳电池应用上转换薄层的示意。这些研究普遍发现,在电池面板或封装玻璃上添加光子转换层后,可以显著增强短路电流,提高光电转换效率
抑制n=2相生成的2D
(PEA)₂FA₄Pb₅I₁₆钙钛矿,成功开发出自供电、高灵敏度的NIR光电探测器。该器件表现出卓越性能:噪声电流低于3 pA
Hz⁻¹/²,开关比高达2×10⁵,在
⁻¹/₂的噪声电流,突破了二维钙钛矿在弱光下的性能瓶颈。其高开关比(2×10⁵)和快速响应时间进一步提升了探测效率。3.弱光成像能力在仅0.1 μW
cm⁻²的超低光照强度下,器件成功捕获高分辨率
焦点之一。杂草丛生光伏电站的潜在威胁光伏电站占地面积广阔,为杂草生长提供了温床。放任杂草肆意生长,将带来一系列严重危害:降低发电效率:过高的杂草会遮挡光伏组件,显著降低光电转换效率,导致发电量损失。引发
造成重大财产损失。统治理之困效率低、成本高、效果差目前常用的传统除草方式,普遍存在明显弊端:▶
人工割草:效率低下,耗时耗力。尤其在南方多雨地区,杂草生长迅猛,割后2-3周即恢复原状,需高频次重复
2025第三届中国光伏储能国际大会并发表《一秒关断并联短路新技术,保障光伏电站安全发电》主题报告,同期在第二届光电建筑防火安全研讨会受邀作《一道智能关断系统产品系列介绍》主题演讲;一道新能组件研究中心
散热,兼具阻燃性能,可灵活适配多场景应用,安装便捷,无需增加支撑梁,直接粘贴效率可提升40%,产品支持全生命周期可拆卸维护,具有优异的材料质保和功率质保。轻刚系列产品则在保证高强度性能的同时将重量降低