,蜂拥而上,无疑加大了其所在区域的负荷预测难度,改变了既有的负荷增长模式,很显然这样的模式会使配电网的改造和管理变得更为复杂。第二方面,电能质量的影响。我们先来搞懂光伏并网发电的原理。光伏并网
发电系统由光伏组件、光伏逆变器以及其他配件组成,和发电有关的两个因素就是组件、逆变器,在有光条件下太阳能电池组件,利用半导体材料的电子学特性,将光能转化成电能,也就是我们说的直流电,逆变器再将光伏系统所发的直流电逆
规划,蜂拥而上,无疑加大了其所在区域的负荷预测难度,改变了既有的负荷增长模式,很显然这样的模式会使配电网的改造和管理变得更为复杂。
第二方面,电能质量的影响。我们先来搞懂光伏并网发电的原理
。
光伏并网发电系统由光伏组件、光伏逆变器以及其他配件组成,和发电有关的两个因素就是组件、逆变器,在有光条件下太阳能电池组件,利用半导体材料的电子学特性,将光能转化成电能,也就是我们说的直流电,逆变器再将
加大了其所在区域的负荷预测难度,改变了既有的负荷增长模式,很显然这样的模式会使配电网的改造和管理变得更为复杂。第二方面,电能质量的影响。我们先来搞懂光伏并网发电的原理。光伏并网发电系统由光伏组件
、光伏逆变器以及其他配件组成,和发电有关的两个因素就是组件、逆变器,在有光条件下太阳能电池组件,利用半导体材料的电子学特性,将光能转化成电能,也就是我们说的直流电,逆变器再将光伏系统所发的直流电逆变成正弦
,无疑加大了其所在区域的负荷预测难度,改变了既有的负荷增长模式,很显然这样的模式会使配电网的改造和管理变得更为复杂。第二方面,电能质量的影响。我们先来搞懂光伏并网发电的原理。光伏并网发电系统由光伏组件
、光伏逆变器以及其他配件组成,和发电有关的两个因素就是组件、逆变器,在有光条件下太阳能电池组件,利用半导体材料的电子学特性,将光能转化成电能,也就是我们说的直流电,逆变器再将光伏系统所发的直流电逆变成
组件、光伏控制器、光伏逆变器等内容。 1太阳能发电原理 太阳能电池是一对光有回应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅、多晶硅、非晶硅、砷化镓、硒铟铜等。它们的发电原理
。
三、光伏发电单元的MPPT及其原理与算法
1、光伏发电单元的MPPT
上面两张图都是一个光伏组件的MPPT跟踪,而在实际工程中,一个500kW的逆变器,往往要接80~90个光伏组串
!
(光伏方阵的输出功率曲线)
2、最大功率点跟踪的原理
随着电子技术的发展,当前太阳能电池阵列的MPPT控制一般是通过DC/DC变换电路来完成的。其原理框图如下图所示。
光伏电池阵列与
以下三种方案,从逆变器的角度消除PID:
方案1:采用负极接地方法,消除组件负极对地的负压
这种方案适用于隔离型光伏逆变器,包括高频隔离型逆变器(如Growatt 2000-5000HF系列产品)和
工频隔离型逆变器(如Growatt CP100-500系列),负极接地后,消除了组件对地的负压,能有效抑制PID现象。而针对非隔离型光伏逆变器(即无变压器设计逆变器如Growatt
时,最大功率按照温度系数的比例逐渐下降,如下表所示。由此可见:电流主要受辐照度的大,电压主要受温度的影响。三、光伏发电单元的MPPT及其原理与算法1、光伏发电单元的MPPT上面两张图都是一个光伏组件的MPPT
光伏组串的输出特性曲线变得复杂,呈多极值点,如何找到最高的那个点,就需要MPPT了! (光伏方阵的输出功率曲线)2、最大功率点跟踪的原理随着电子技术的发展,当前太阳能电池阵列的MPPT控制一般是通过
率按照温度系数的比例逐渐下降,如下表所示。由此可见:电流主要受辐照度的大,电压主要受温度的影响。三、光伏发电单元的MPPT及其原理与算法1、ink"光伏发电单元的MPPT上面两张图都是一个光伏组件的
接入的光伏组串的输出特性曲线变得复杂,呈多极值点,如何找到最高的那个点,就需要MPPT了!(光伏方阵的输出功率曲线)2、最大功率点跟踪的原理随着电子技术的发展,当前太阳能电池阵列的MPPT控制一般是通过
,逆变器就会停止工作。非隔离型光伏并网逆变器对地漏电流原理图在硅基薄膜组件光伏发电系统中,为了防止组件导电层TCO腐蚀,组件负极必须接地,为防止对地共模电压超过系统电压且抑制光伏方阵电池板的对地
直流电压。最后经过输出侧的后级全桥逆变器逆变成为交流电,并入电网。高频隔离光伏逆变器拓扑结构图尽管高频隔离型逆变器有很多优点,但由于增加了DC/AC逆变,高频变压器,AC/DC整流三级拓扑结构,使得电气