武汉纺织大学陶晨&方国家&新加坡国立大学侯毅最新《Nat. Commun.》氧化钇基底工程显著提升钙钛矿太阳能电池耐久性

来源:先进光伏发布时间:2025-10-30 16:21:39

论文概览

钙钛矿太阳能电池作为新一代光伏技术的明星,其效率记录不断被刷新,然而商业化进程却一直受制于稳定性问题。传统研究大多聚焦于钙钛矿吸光层本身或相邻电荷传输层的优化,却忽视了整个器件的基础——透明导电氧化物衬底。武汉纺织大学陶晨&方国家&新加坡国立大学侯毅发现氟掺杂氧化锡透明导电衬底在光照、高温和电偏压等操作应力下会发生离子扩散,这一隐藏的不稳定性问题严重制约了钙钛矿太阳能电池的长期耐久性。针对这一问题,研究团队开发了一种通用的界面工程策略——通过可扩展的热蒸发沉积结合自然氧化方法,在FTO表面形成原子级键合的氧化钇界面层。这一简单而高效的方法显著增强了FTO的结构稳定性,为制备高效稳定的钙钛矿太阳能电池提供了新思路。

技术亮点

氧化钇界面层的多重优势

1.热蒸发沉积+自然氧化的简易工艺是该技术的首要亮点。研究人员首先通过热蒸发在FTO衬底上沉积金属钇薄膜,随后在环境空气中自然氧化形成Y₂O₃界面层。这种方法不仅工艺简单,而且完全兼容工业化大规模制造。

2. 理论计算表明,Y-O键比传统的Sn-O键更短、更强。Y-O键长为2.008Å,明显短于Sn-O键的2.372Å,其键合强度也更高,为界面提供了优异的机械和化学稳定性。

3.Y₂O₃具有宽禁带、高介电常数和低缺陷密度等优异特性,其光学折射率与FTO接近,能够最大限度地减少菲涅尔反射,保持光子传输效率。

深度精读

图1: Y₂O₃界面层的合成及其与FTO的强键合机制

图1系统展示了氧化钇(Y₂O₃)界面层的制备流程及其在FTO衬底上的强化键合作用。图1a为器件结构示意图,凸显Y₂O₃层在钙钛矿电池中的关键位置。图1b进一步通过热蒸发装置示意图,直观呈现金属钇在FTO上的沉积过程。理论计算深入揭示了界面键合本质:Y₂O₃与FTO界面处的Y–O键键长(2.008 Å)显著短于Sn–O键(2.372 Å),结合晶体轨道哈密顿布居(COHP)分析(图1e, f)证实Y–O键具有更高的键合强度(–ICOHP = 2.91 eV),远优于Sn–O键(–ICOHP = 2.50 eV),从而在原子尺度为界面提供了卓越的机械与化学稳定性。

图2:Y₂O₃界面层的微观结构与元素分布表征

图2通过高分辨率显微分析技术揭示了Y₂O₃界面层的微观结构特性。STEM-EDS元素分布图(图2a-e)清晰展示了Y₂O₃层在FTO衬底上的均匀、致密覆盖,其中锡(图2b)、铅(图2c)、钇(图2d)和氧(图2e)的元素信号分别与FTO、钙钛矿吸收层和Y₂O₃界面层的空间位置精确对应高角环形暗场扫描透射电子显微镜图像(图2f)进一步证实,Y₂O₃界面层在粗糙的FTO表面形成了共形且连续的薄膜结构。高分辨TEM图像(图2h, i)在原子尺度揭示了界面处的晶格匹配关系:FTO侧观测到0.235 nm的晶面间距,对应SnO₂的(200)晶面;而Y₂O₃侧0.306 nm的间距则归属于其(222)晶面。XRD图谱(图2g)表明,当Y₂O₃膜厚增至800 nm时出现明显衍射峰,而优化厚度(2 nm)的界面层呈非晶态,这与其卓越的覆盖性和界面钝化效果密切相关。

图3:Y₂O₃界面层的电子能带结构与表面特性分析

图3系统表征了Y₂O₃界面层的电子能带结构及其表面物理特性。XPS分析显示(图3a, b),Y₂O₃层中Y 3d和O 1s轨道结合能位置明确,且氧空位缺陷密度极低,表明金属钇已完全氧化形成高质量的Y₂O₃界面层。开尔文探针力显微镜(KPFM)测量表明(图3c, d),沉积Y₂O₃后表面接触电位差从392 mV轻微下降至374 mV,证实其具有调节界面电子特性的能力。紫外光电子能谱(UPS)测试结果(图3e)显示Y₂O₃的功函数为3.22 eV,价带顶位于4.73 eV处。反射电子能量损失谱(REELS)进一步确定其带隙约为5.7 eV(图3f),与文献报道一致。基于此绘制的能带结构示意图(图3g)表明,Y₂O₃具有深价带和浅导带的特性,使其既能阻挡空穴向FTO电极的回流,又允许电子通过量子隧穿效应高效传输。图3h的能级排列示意图进一步阐明,Y₂O₃层在SnO₂电子传输层与钙钛矿吸收层之间建立了优化的能级对齐,有效抑制了载流子的界面复合损失。应同步实现应变释放与稳定性提升。

图4:Y₂O₃界面层抑制离子扩散的屏障作用机制

图4通过飞行时间二次离子质谱(ToF-SIMS)深度剖析揭示了Y₂O₃界面层对离子迁移的抑制作用。在85°C加热300小时后,未修饰的FTO/SnO₂/钙钛矿结构中(图4a-c),氟、氧元素从FTO向SnO₂和钙钛矿层明显扩散,同时钙钛矿中的碘也向FTO电极迁移;而Y₂O₃修饰的样品(图4d-f)中这些元素的横向扩散被显著抑制。图4g和h的示意图清晰对比了Y₂O₃的屏障机制:未加Y₂O₃时(图4g),旋涂的SnO₂无法在粗糙FTO表面形成致密覆盖,导致钙钛矿与FTO直接接触产生漏电通道,离子跨界面迁移加剧器件退化;引入Y₂O₃后(图4h),其致密且共形的特性不仅阻挡了离子互扩散,还覆盖了FTO表面的缺陷位点,从而同时提升器件的稳定性与性能。

图5:Y₂O₃界面层提升器件性能与稳定性的实验验证

图5展示了引入Y₂O₃界面层后钙钛矿太阳能电池性能的显著提升。在正式(n-i-p)器件中(图5a),Y₂O₃修饰的电池实现了26.48%的冠军效率,其开路电压(Voc)和填充因子(FF)的提升尤为突出,稳态功率输出(图5b)也达到26.37%,远高于对照组的23.78%。外量子效率(EQE)曲线(图5c)显示积分电流密度与J-V测试结果高度吻合。该策略展现出优异的普适性:在反式(p-i-n)结构中效率达26.34%,更重要的是,在全钙钛矿叠层电池中(图5d)效率突破28.47%,稳态输出超过28%(图5e),且子电池电流匹配良好(图5f)。最关键的是,未封装器件在连续最大功率点跟踪1200小时后(图5g),Y₂O₃修饰的器件仍能保持98%的初始效率,而对照组已衰减至80%,充分证明了Y₂O₃界面层对提升器件长期运行稳定性的决定性作用。

文献来源

Li, B., Gao, D., Vanin, F. et al. Nanoscale soft interaction-engineered perovskite heterojunctions for highly efficient and reproducible solar cells. Nat Commun 16, 9500 (2025).

https://doi.org/10.1038/s41467-025-64550-4.

仅用于学术分享,如有侵权,请联系删除。


索比光伏网 https://news.solarbe.com/202510/30/50011485.html
责任编辑:wanqin
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
Sang Il Seok最新AEL:协同偶极工程释放宽禁带钙钛矿中92.8% S-Q 电压极限,用于叠层光伏来源:知光谷 发布时间:2025-12-24 09:20:57

最终,最优WBGPSC实现了VOC=1.29V、JSC=20.0mAcm、FF=82.8%和PCE=21.27%,对应Shockley–Queisser电压极限的92.8%。这些结果表明,协同缺陷钝化与能级调控对于释放WBG钙钛矿的完整电压潜力均至关重要。研究亮点:突破性电压表现:通过协同表面处理,宽禁带钙钛矿电池开路电压达1.29V,实现Shockley–Queisser理论极限的92.8%,为同类器件中最高之一。高效叠层集成:经处理的宽禁带钙钛矿作为顶电池,与硅底电池组成叠层器件,实现26.8%的光电转换效率与1.91V的高开路电压,展示其在实际叠层光伏中的应用潜力。

中山大学毕冬勤AM:邻苯二酚锚定基团助力锡-铅钙钛矿全钙钛矿叠层效率突破28.3%来源:知光谷 发布时间:2025-12-24 09:19:15

本研究中山大学毕冬勤等人首次设计并引入一种新型SAM分子——9--9H-咔唑,其具有共轭邻苯二酚锚定基团,应用于锡-铅钙钛矿电池中。此外,DOPhCz加速空穴提取并减少器件工作过程中的化学扰动。应用于全钙钛矿叠层电池时,效率达到28.30%。高效稳定全钙钛矿叠层电池:基于DOPhCz的Sn-Pb子电池效率达24.17%,全钙钛矿叠层效率达28.30%;在最大功率点连续运行500小时后仍保持80%初始效率,界面与运行稳定性显著优于2PACz体系。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

南京工业大学曹久朋&秦天石AEL:调节宽带隙钙钛矿结晶并抑制相位分离制备高性能钙硅叠层器件来源:先进光伏 发布时间:2025-12-23 10:58:16

论文概览宽带隙钙钛矿太阳电池是叠层光伏器件的关键组成部分。然而宽带隙钙钛矿中较高的溴离子含量容易导致复杂的结晶过程和薄膜质量的降低。光稳定性测试中PA改性器件在1000小时连续光照老化后保持90.1%初始效率,远超对照组,证明2D钙钛矿通过结晶调控与相分离抑制实现钙硅叠层器件光电转换效率和长期稳定性的协同突破。这项工作为制备高质量宽带隙钙钛矿以及高性能钙硅叠层太阳能电池提供了重要的材料设计以及工艺路线指导。

AFM:双功能电子传输层工程实现能级对齐与界面钝化,打造高效钙钛矿发光二极管来源:知光谷 发布时间:2025-12-23 10:00:54

我们深入研究了BPAH对ETL能级和迁移率的影响,并揭示了其与发光层之间的强相互作用,有效钝化了发光层表面缺陷,促进了电荷传输与辐射复合。研究亮点:一分子双功能:BPAH实现ETL能级调控与界面钝化BPAH分子插入POT2T分子间隙,改善π-π堆叠,提升电子迁移率;其咪唑基团与发光层中未配位Pb配位,增强铅-卤键结合力,有效抑制卤离子迁移与界面缺陷。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

青岛科技大学周忠敏&中科院青岛生物能源与过程研究所逄淑平最新JACS:基于软硬酸碱理论设计硫醇交联剂,钙钛矿/SAM界面强韧化来源:先进光伏 发布时间:2025-12-22 16:34:53

论文概览针对倒置结构钙钛矿太阳能电池中钙钛矿/自组装单分子层异质界面机械稳定性差、制约器件长期可靠性的关键瓶颈,青岛科技大学与中国科学院青岛生物能源与过程研究所联合团队创新性地基于软硬酸碱理论,设计并筛选出一系列硫醇(-SH)基交联剂,用于强化界面化学键合并提升稳定性。

港科大周圆圆、港理工蔡嵩骅等人NC:揭秘钙钛矿电池性能的“隐形杀手”——晶内杂质纳米团簇来源:先进光伏 发布时间:2025-12-22 16:29:28

香港科技大学周圆圆、香港理工大学蔡嵩骅等研究团队,通过低剂量扫描透射电子显微镜首次在铯掺杂混合阳离子钙钛矿薄膜中,发现了一种新型亚稳态晶粒内杂质纳米簇。核心技术亮点首次发现晶粒内隐藏杂质:利用超低剂量扫描透射电镜,首次在原子尺度上直接观测并解析了隐藏在钙钛矿晶粒内部的亚稳态ABX型杂质纳米团簇的晶体结构。

西安交通大学马伟团队Angew:香豆素基挥发/非挥发性固体添加剂协同作用,助力有机太阳能电池效率突破20.3%!来源:先进光伏 发布时间:2025-12-22 16:27:12

针对这一挑战,湘潭大学、西安交通大学、西安科技大学等多个团队合作设计并合成了两种具有相似骨架的香豆素衍生物固体添加剂:挥发性C5与非挥性C6。结论展望本研究通过精准设计一对结构相似但挥发性迥异的香豆素衍生物添加剂,首次系统比较并揭示了挥发性与非挥发性固体添加剂在有机太阳能电池中的作用机制差异。