武汉纺织大学陶晨&方国家&新加坡国立大学侯毅最新《Nat. Commun.》氧化钇基底工程显著提升钙钛矿太阳能电池耐久性

来源:先进光伏发布时间:2025-10-30 16:21:39

论文概览

钙钛矿太阳能电池作为新一代光伏技术的明星,其效率记录不断被刷新,然而商业化进程却一直受制于稳定性问题。传统研究大多聚焦于钙钛矿吸光层本身或相邻电荷传输层的优化,却忽视了整个器件的基础——透明导电氧化物衬底。武汉纺织大学陶晨&方国家&新加坡国立大学侯毅发现氟掺杂氧化锡透明导电衬底在光照、高温和电偏压等操作应力下会发生离子扩散,这一隐藏的不稳定性问题严重制约了钙钛矿太阳能电池的长期耐久性。针对这一问题,研究团队开发了一种通用的界面工程策略——通过可扩展的热蒸发沉积结合自然氧化方法,在FTO表面形成原子级键合的氧化钇界面层。这一简单而高效的方法显著增强了FTO的结构稳定性,为制备高效稳定的钙钛矿太阳能电池提供了新思路。

技术亮点

氧化钇界面层的多重优势

1.热蒸发沉积+自然氧化的简易工艺是该技术的首要亮点。研究人员首先通过热蒸发在FTO衬底上沉积金属钇薄膜,随后在环境空气中自然氧化形成Y₂O₃界面层。这种方法不仅工艺简单,而且完全兼容工业化大规模制造。

2. 理论计算表明,Y-O键比传统的Sn-O键更短、更强。Y-O键长为2.008Å,明显短于Sn-O键的2.372Å,其键合强度也更高,为界面提供了优异的机械和化学稳定性。

3.Y₂O₃具有宽禁带、高介电常数和低缺陷密度等优异特性,其光学折射率与FTO接近,能够最大限度地减少菲涅尔反射,保持光子传输效率。

深度精读

图1: Y₂O₃界面层的合成及其与FTO的强键合机制

图1系统展示了氧化钇(Y₂O₃)界面层的制备流程及其在FTO衬底上的强化键合作用。图1a为器件结构示意图,凸显Y₂O₃层在钙钛矿电池中的关键位置。图1b进一步通过热蒸发装置示意图,直观呈现金属钇在FTO上的沉积过程。理论计算深入揭示了界面键合本质:Y₂O₃与FTO界面处的Y–O键键长(2.008 Å)显著短于Sn–O键(2.372 Å),结合晶体轨道哈密顿布居(COHP)分析(图1e, f)证实Y–O键具有更高的键合强度(–ICOHP = 2.91 eV),远优于Sn–O键(–ICOHP = 2.50 eV),从而在原子尺度为界面提供了卓越的机械与化学稳定性。

图2:Y₂O₃界面层的微观结构与元素分布表征

图2通过高分辨率显微分析技术揭示了Y₂O₃界面层的微观结构特性。STEM-EDS元素分布图(图2a-e)清晰展示了Y₂O₃层在FTO衬底上的均匀、致密覆盖,其中锡(图2b)、铅(图2c)、钇(图2d)和氧(图2e)的元素信号分别与FTO、钙钛矿吸收层和Y₂O₃界面层的空间位置精确对应高角环形暗场扫描透射电子显微镜图像(图2f)进一步证实,Y₂O₃界面层在粗糙的FTO表面形成了共形且连续的薄膜结构。高分辨TEM图像(图2h, i)在原子尺度揭示了界面处的晶格匹配关系:FTO侧观测到0.235 nm的晶面间距,对应SnO₂的(200)晶面;而Y₂O₃侧0.306 nm的间距则归属于其(222)晶面。XRD图谱(图2g)表明,当Y₂O₃膜厚增至800 nm时出现明显衍射峰,而优化厚度(2 nm)的界面层呈非晶态,这与其卓越的覆盖性和界面钝化效果密切相关。

图3:Y₂O₃界面层的电子能带结构与表面特性分析

图3系统表征了Y₂O₃界面层的电子能带结构及其表面物理特性。XPS分析显示(图3a, b),Y₂O₃层中Y 3d和O 1s轨道结合能位置明确,且氧空位缺陷密度极低,表明金属钇已完全氧化形成高质量的Y₂O₃界面层。开尔文探针力显微镜(KPFM)测量表明(图3c, d),沉积Y₂O₃后表面接触电位差从392 mV轻微下降至374 mV,证实其具有调节界面电子特性的能力。紫外光电子能谱(UPS)测试结果(图3e)显示Y₂O₃的功函数为3.22 eV,价带顶位于4.73 eV处。反射电子能量损失谱(REELS)进一步确定其带隙约为5.7 eV(图3f),与文献报道一致。基于此绘制的能带结构示意图(图3g)表明,Y₂O₃具有深价带和浅导带的特性,使其既能阻挡空穴向FTO电极的回流,又允许电子通过量子隧穿效应高效传输。图3h的能级排列示意图进一步阐明,Y₂O₃层在SnO₂电子传输层与钙钛矿吸收层之间建立了优化的能级对齐,有效抑制了载流子的界面复合损失。应同步实现应变释放与稳定性提升。

图4:Y₂O₃界面层抑制离子扩散的屏障作用机制

图4通过飞行时间二次离子质谱(ToF-SIMS)深度剖析揭示了Y₂O₃界面层对离子迁移的抑制作用。在85°C加热300小时后,未修饰的FTO/SnO₂/钙钛矿结构中(图4a-c),氟、氧元素从FTO向SnO₂和钙钛矿层明显扩散,同时钙钛矿中的碘也向FTO电极迁移;而Y₂O₃修饰的样品(图4d-f)中这些元素的横向扩散被显著抑制。图4g和h的示意图清晰对比了Y₂O₃的屏障机制:未加Y₂O₃时(图4g),旋涂的SnO₂无法在粗糙FTO表面形成致密覆盖,导致钙钛矿与FTO直接接触产生漏电通道,离子跨界面迁移加剧器件退化;引入Y₂O₃后(图4h),其致密且共形的特性不仅阻挡了离子互扩散,还覆盖了FTO表面的缺陷位点,从而同时提升器件的稳定性与性能。

图5:Y₂O₃界面层提升器件性能与稳定性的实验验证

图5展示了引入Y₂O₃界面层后钙钛矿太阳能电池性能的显著提升。在正式(n-i-p)器件中(图5a),Y₂O₃修饰的电池实现了26.48%的冠军效率,其开路电压(Voc)和填充因子(FF)的提升尤为突出,稳态功率输出(图5b)也达到26.37%,远高于对照组的23.78%。外量子效率(EQE)曲线(图5c)显示积分电流密度与J-V测试结果高度吻合。该策略展现出优异的普适性:在反式(p-i-n)结构中效率达26.34%,更重要的是,在全钙钛矿叠层电池中(图5d)效率突破28.47%,稳态输出超过28%(图5e),且子电池电流匹配良好(图5f)。最关键的是,未封装器件在连续最大功率点跟踪1200小时后(图5g),Y₂O₃修饰的器件仍能保持98%的初始效率,而对照组已衰减至80%,充分证明了Y₂O₃界面层对提升器件长期运行稳定性的决定性作用。

文献来源

Li, B., Gao, D., Vanin, F. et al. Nanoscale soft interaction-engineered perovskite heterojunctions for highly efficient and reproducible solar cells. Nat Commun 16, 9500 (2025).

https://doi.org/10.1038/s41467-025-64550-4.

仅用于学术分享,如有侵权,请联系删除。

索比光伏网 https://news.solarbe.com/202510/30/50011485.html

责任编辑:wanqin
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
向27%量产电池效率迈进——迈为股份亮相国际异质结大会暨钙钛矿-硅叠层大会,分享最新异质结提效技术来源:迈为股份 发布时间:2025-12-05 16:11:25

2025年12月1-3日,第八届国际异质结大会和首届国际钙钛矿-硅叠层大会在韩国大田隆重举行。面向27%效率的下一代异质结技术布局在上述已验证且行之有效的提效技术基础上,彭振维进一步介绍了迈为对下一代异质结电池的探索与发现。异质结成本与可持续性优势凸显除了效率领先,异质结技术的低成本潜力正加速释放。随着银浆价格持续上涨,异质结电池低银耗的优势日益突出,成本竞争力进一步增强。

KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

中国石油再创钙钛矿电池效率世界纪录来源:钙钛矿材料和器件 发布时间:2025-12-05 14:27:36

通过持续的技术创新,团队成功攻克了薄膜材料广域带隙精准调控、高质量结晶工艺优化等一系列关键难题,先后3次刷新1.68eV宽带隙与1.50eV常规带隙钙钛矿电池的光电转换效率世界纪录。这一成果不仅标志着中国石油在钙钛矿电池技术领域实现了多路线布局,更使其跻身全球极少数掌握多种钙钛矿太阳能电池核心技术的企业行列。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

欧达光电获评浙江省钙钛矿太阳能电池重点企业研究院来源:钙钛矿工厂 发布时间:2025-12-05 08:59:37

12月3日,浙江省经济和信息化厅就2025年度重点企业研究院、企业研究院拟认定名单进行公示,拟认定浙江省可信数据智能重点企业研究院等211家省重点企业研究院和浙江省亿达时智能灯光企业研究院等1442家省企业研究院。

日本松下在办公窗户上测试玻璃基钙钛矿太阳能电池板来源:pv-magazine 发布时间:2025-12-04 14:55:48

在研究中,松下玻璃型钙钛矿太阳能光伏被用于四个带有防水木质推拉框的YKK内窗,尺寸为723毫米×1080毫米。松下公司开发钙钛矿太阳能技术已超过十年。

大突破!柔性钙钛矿太阳能电池26.22%!南昌大学陈义旺&胡笑添&上交大颜徐州Nature大子刊!来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-04 14:35:17

柔性钙钛矿太阳能电池实现了高效可弯曲能量转换,为下一代可穿戴设备提供了可能。然而,从实验室原型到工业规模组件的转化进程,受限于印刷过程中钙钛矿胶体颗粒的非均匀沉积,导致光电转换效率下降。

国家气候专家委副主任王毅:“双碳”是系统工程,必须转变发展方式来源:零碳时代NetZeroAge 发布时间:2025-12-04 11:57:18

在这个关键节点,中国及时更新国家自主贡献目标,不仅展现了大国担当,也更因为“双碳”行动是中国面向未来的重大战略决策。发展模式转变的核心是能源系统转型,中国是全球首个尝试依靠非化石能源实现现代化进程的大国,这将为全球发展中国家转型探索新的发展模式。气候变化是全球共同的挑战,绿色低碳发展是全球共同趋势,需要各个国家合作努力。