太阳电池激光划裂技术的发展趋势分析

来源:太阳能杂志发布时间:2022-05-24 07:27:42

徐兵 . 太阳电池激光划裂技术的发展趋势分析. [J]. 太阳能 2021(10):8-14.

随着全球经济的发展,全球能源市场正在经历前所未有的变革。我国作为可再生能源产能大国,现已成为全球能源结构转型的主角,我国的节能减排理念与主张已得到多数国家的认可,开始从全球气候改善的参与者向引领者转变,也已成为全球可再生能源投资大国。根据相关资料显示,我国在可再生能源领域,尤其是在太阳能的光伏技术应用方面已趋于世界领先水平,光伏组件生产量占据全球 70% 以上的市场份额,“光伏应用”已成为“国家绿色名片”中的重要词汇。

从科研攻关到市场应用,从光伏利用大国到光伏利用强国,从光伏扶贫到“光伏 + 多种模式应用”的创新,我国光伏市场在全球光伏市场一路领跑。如今,通过光伏产业降本增效,以及“一带一路”、加强全球南北合作等的开展,我国光伏产业为广大发展中国家提高电力普及率,以及改善全球大气环境输出了“中国智慧”与“行动”。未来,在光伏技术与光伏市场发展的推动下,作为全球能源转型的重要力量,我国的光伏产业将发挥越来越重要的作用。

太阳电池是光伏组件中最核心的部件。随着光伏发电技术的进步,在太阳电池生产过程中,有时需要将 1 片完整的太阳电池切割成多片大小相同的小太阳电池,然后将切割后的小片太阳电池焊接成太阳电池串,从而可以提高最终制备的光伏组件的光电转换效率。太阳电池的切割通常采用划裂技术,以切割成不同尺寸规格的小片太阳电池为基础,可生产出种类繁多的新型光伏组件,例如:半片光伏组件、210 太阳电池三分片光伏组件、多片叠瓦光伏组件、板块互联光伏组件、无缝焊接多主栅光伏组件等。因此,太阳电池切割已成为光伏组件产品迭代升级中不可或缺的工艺环节。

本文详细阐述了太阳电池激光划裂技术的原理,介绍了近年来市场中常用的太阳电池激光划裂技术的原理和发展情况,并对比分析了新型的无损伤激光划裂技术与常规激光划裂技术的主要区别和各自的优、缺点。

1、太阳电池激光划裂技术的原理

太阳电池切割时的划裂技术一般采用激光划裂技术,该技术的原理示意图如图 1 所示。

太阳电池激光划裂技术的发展趋势分析

太阳电池激光划裂技术均采用激光划裂机。如图 1 所示,技术原理为:以电子放电作为供给能源,通过 He、N2、CO2 等混合气体作为激发激光发射器发射的激光的媒介,利用激光振镜聚焦激光形成激光光束,并通过改变激光光束的路径使其照射到太阳电池上,此时激光光束的光能转换为热能,且其热量大幅超过被太阳电池反射、传导或扩散的那部分热量,太阳电池中被照射位置的材料迅速熔化、汽化、烧蚀或达到燃点,从而使此处被刺穿并形成小孔;由于激光光束与太阳电池是沿一定的相对线性轨迹移动,使这些小孔能够连起来形成切缝,从而实现对太阳电池的切割。切割头 ( 激光发射器与激光振镜组装后的总称 ) 按照预定路线运动,可将整片太阳电池切割成半片太阳电池、三分片太阳电池、四分片太阳电池等。

2、常规太阳电池激光划裂技术的介绍

当前,在光伏产业采用的常规太阳电池激光划裂技术中,激光烧蚀配合机械掰片技术为主流技术。

2.1 激光烧蚀配合机械掰片技术的原理

激光烧蚀配合机械掰片技术的工艺原理是:首先利用激光光束在太阳电池背面或正面划裂出一条贯穿太阳电池表面的切割道,然后采用机械掰片法将太阳电池沿着切割道掰开。由于在常规激光划裂机中引入多刀激光划裂技术后,可将常规激光划裂机对太阳电池造成的损伤降至光伏企业可接受范围的损伤,因此激光烧蚀配合机械掰片技术是现阶段的主流技术。

2.2 机械掰片技术的种类及原理

常见的机械掰片技术包括 2 种:气缸组合式吸片机械手掰片技术、皮带输送式掰片技术。

2.2.1 气缸组合式吸片机械手掰片技术

气缸组合式吸片机械手掰片技术采用的是以气缸为动力源的机械式机构加吸盘。采用气缸组合式吸片机械手掰片技术对太阳电池进行激光切割时,为了减少对太阳电池的损伤,一般激光切割深度为太阳电池厚度的 30%~50%。由于气缸组合式吸片机械手是由多个机械吸盘分片装置组成,沿着太阳电池表面划裂出的切割道进行掰片时利用的是外界力,导致掰片后的太阳电池的切割道会有明显的毛刺,如图 2 所示。

太阳电池激光划裂技术的发展趋势分析

气缸组合式吸片机械手掰片技术的产能受到气缸动作速度的限制,一系列采用气缸组合式吸片机械手掰片技术的设备的产能极限一般为每小时划裂 2500 片整片太阳电池。

2.2.2 皮带输送式掰片技术的原理

常见的皮带输送式掰片技术包括 2 种:一种是曲面真空裂片技术;另一种是中间切割刀沿太阳电池表面的切割道划裂太阳电池的技术。这2 种皮带输送式掰片技术的前段工序均是采用激光光束切割太阳电池,切割深度约为太阳电池厚度的 40%~60%。皮带输送式掰片技术的产能与皮带输送速度有关,由于速度可调,该技术的掰片速度通常比气缸组合式吸片机械手掰片技术要快,因此具有产能增加的优势。

1) 曲面真空裂片技术是利用真空吸附已划裂出切割道的太阳电池,并将其通过输送皮带输送至曲面真空,切割后的太阳电池因受到大曲径的曲面真空吸附,太阳电池沿切割道断裂,从而实现对太阳电池的切割。曲面真空裂片技术示意图如图 3 所示。

太阳电池激光划裂技术的发展趋势分析

2) 放置在平带线中间的切割刀沿太阳电池上已划好的切割道划裂太阳电池,具体如图 4 所示。该方式一般是将整片太阳电池切割成半片太阳电池或三分片太阳电池。

太阳电池激光划裂技术的发展趋势分析

3、太阳电池激光划裂技术的发展趋势

随着超小太阳电池间距、大尺寸硅片和超低温太阳电池等工艺的产生,常规太阳电池激光划裂技术的工艺已无法满足太阳电池及光伏组件高品质的需求。因此,新型的无损伤激光划裂技术因需而生。

无损伤激光划裂技术采用无损伤激光划裂机,其解决了常规激光划裂机会不可避免地损伤太阳电池的问题。

无损伤激光划裂技术已成为太阳电池激光划裂技术的发展趋势,正在推向太阳电池主流市场,在不久的将来,该技术将主导太阳电池激光划裂市场。

3.1 无损伤激光划裂技术的原理

无损伤激光划裂技术的核心原理是利用激光热应力控制材料断裂的技术,其工艺流程为:首先在太阳电池边缘加工 1 个超小槽口;然后利用激光对太阳电池进行局部快速加热,形成激光光斑,同时利用设备配套的冷却装置对太阳电池进行局部冷却,如此会产生一个不均匀的温度场,该温度场会在太阳电池表面产生温度梯度,从而诱发热应力产生;其中激光光斑处于压应力状态,而激光光斑前、后处于拉应力状态,由于太阳电池是脆性材料,其抗压刚度远大于抗拉强度,因此当拉应力达到太阳电池的断裂强度时,会导致太阳电池发生断裂;断裂会随着激光照射及后续冷却的移动轨迹从最初在太阳电池边缘加工的超小槽口开始稳定扩张,最终完成对太阳电池的切割。

3.2 无损伤激光划裂技术与常规激光划裂技术的对比

下文从太阳电池的表面形貌、加工产生的粉尘量、加工温度、太阳电池性能测试 4 个方面对无损伤激光划裂技术与常规激光划裂技术的主要区别和各自的优、缺点进行对比分析。

3.2.1 太阳电池的表面形貌

1) 常规激光划裂技术会在太阳电池表面烧蚀形成切割道,该切割道的宽度为 30 μm、深度为60~90 μm,同时太阳电池表面的横向热影响区宽度会扩展到 70~80 μm。

2) 无损伤激光划裂技术切割的太阳电池的截断面干净、不存在损伤点,主要原因在于无损伤激光划裂技术在对太阳电池进行切割时不存在激光烧蚀的过程。

3.2.2 加工产生的粉尘量

1) 采用常规激光划裂技术时需去除太阳电池表面切割道内的硅粉尘。由于该技术在对太阳电池切割时会产生大量的硅粉尘,因此需要配置经过特殊设计的除尘装置,否则容易引起火灾。

2) 采用无损伤激光划裂技术时产生的硅粉尘数量很少,可忽略不计。

3.2.3 加工温度

1) 采用常规激光划裂技术切割太阳电池时,激光光斑温度可达 400~500 ℃。

2) 采用无损伤激光划裂技术切割太阳电池时,加工温度需控制在 150~250 ℃范围内,属于低温加工工艺。

3.2.4 太阳电池性能测试

分别对采用无损伤激光划裂技术与常规激光划裂技术切割的太阳电池进行性能测试,并对测试结果进行对比分析。

1) 三点抗弯强度测试。与整片太阳电池的三点抗弯强度相比,采用无损伤激光划裂技术切割后的太阳电池的三点抗弯强度几乎保持不变,而采用常规激光划裂技术切割后的太阳电池的三点抗弯强度下降了 10% 以上。

该数据进一步证明了无损伤激光划裂技术解决了常规激光划裂技术在切割过程中对太阳电池造成的损伤问题,采用无损伤激光划裂技术有利于实现光伏组件加工过程中破片率的控制和返修率的控制,同时可加强光伏组件在长期户外应用环境下的可靠性,进而可降低光伏发电企业的成本。无损伤激光划裂技术的上述优点有利于大尺寸硅片和切割成三分片及更小尺寸电池等新工艺在光伏产业内的导入。

2) 太阳电池电性能测试。相对于常规激光划裂技术,无损伤激光划裂技术的热损伤降低,使采用无损伤激光划裂技术切割的太阳电池制备的光伏组件的功率有小幅提升,提升幅度约为2%~3%。

3.3 无损伤激光划裂技术的瓶颈

由于无损伤激光划裂技术是近几年才兴起的新技术,技术尚未成熟,还存在一些技术瓶颈,比如:划裂不到位、产能不高等。造成这些技术瓶颈的原因主要在于:

1) 与无损伤激光划裂机配套的冷却装置一般采用冷却水,并将其喷洒到太阳电池加热区域附近,但由此产生的温度梯度有时会不太明显,从而导致太阳电池划裂不到位。

2) 喷洒的冷却水会残留在太阳电池表面,需要进行相应的加热过程,以蒸发这些残留的冷却水,但这一工序较耗时,会影响采用无损伤激光划裂技术的设备的产能。

4、结论

本文阐述了切割太阳电池时常用的激光划裂技术的原理,并分析和对比了常规激光划裂技术和无损伤激光划裂技术的优、缺点。根据分析结果,相对于现在业界采用的常规激光划裂技术,无损伤激光划裂技术具有较多的技术优势。随着无损伤激光划裂技术的逐渐成熟,其将在未来光伏产业设备中得到大规模应用。

太阳电池激光划裂技术的发展趋势分析

索比光伏网 https://news.solarbe.com/202205/24/355132.html

责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

通威异质结技术荣获2025年度中国可再生能源学会科学技术奖一等奖来源:通威股份 发布时间:2025-12-03 09:11:15

近日,“2025年度中国可再生能源学会科学技术奖”评选结果正式揭晓,通威“高效率低成本硅异质结太阳电池技术”凭借在技术创新、成果转化及行业引领等方面的突出表现,历经多轮严苛评审,成功斩获科学技术奖一等奖。科学技术奖公告文件获奖项目名单通威作为异质结技术的先行者,始终致力于技术创新,为行业高质量发展持续赋能。

前沿光伏技术之中间带太阳电池:让低能光子“无处可逃”的超能武器来源:网络 发布时间:2025-11-24 11:09:28

以晶体硅为代表的第一代太阳电池,其效率已接近理论极限,提效空间有限;第二代太阳电池(CdTe、CIGS、非晶/微晶硅等)虽然生产成本较低,但效率偏低,且其中部分材料存在资源稀缺或环境毒性等问题,难以支撑大规模可持续应用。在此背景下,第三代太阳电池应运而生,包括有机光伏、钙钛矿电池、多结叠层、中间带、热载流子、光子/激子倍增以及热光伏等。这些新技术的共同目标是在不增加复杂封装与阳光跟踪系统的前提下,不断推动单片电池转换效率的提升。

前沿光伏技术之循环器:第三代太阳电池效率革命的 “隐形推手”来源:投稿 发布时间:2025-10-29 10:45:26

基于拓宽光谱响应的第三代太阳电池的诞生,正是为了突破这一困境。然而太阳电池属于交互系统,这意味着太阳电池吸收阳光的同时,必然会向太阳方向发射热辐射,造成不可避免的能量损失。在第三代太阳电池的应用场景中,引入循环器技术,将其特性得到了充分发挥。

武汉大学闵杰教授团队Joule综述:从非富勒烯受体分子设计到产业应用的有机光伏技术发展蓝图来源:知光谷 发布时间:2025-10-29 08:59:58

这种综合评估理念正在逐步获得学术界与产业界的广泛认同,为推动技术的实用化发展提供了重要指导。研究表明,非富勒烯受体材料的降解主要源于光氧化和分子异构化等机制。然而,近期的研究表明形貌演变更多地受动力学机制支配。

高反射率场景下的HJT优势解码:从沙戈荒到叠层未来,华晟HJT的发电效能进阶与光伏技术迭代逻辑来源:华晟新能源 发布时间:2025-10-14 09:33:18

同时,华晟凭借卓越的技术创新与产业引领能力,荣获“光伏领袖企业”“光伏技术突破企业”两项殊荣。“异质结与钙钛矿是天生的叠层最佳组合。未来五年,华晟将坚定推动HJT叠钙钛矿的产业化进程,率先实现GW级量产。”从沙戈荒的高反射地貌到全球能源变革的主舞台,华晟新能源正以强大的研发实力和系统化解决方案,持续推动高效异质结技术的产业化落地。

前沿光伏技术之多结叠层太阳电池:让阳光发挥更大能量的黑科技来源:财报资讯网 发布时间:2025-09-12 16:58:11

传统单结太阳电池可以利用的光谱部分由其半导体材料的带隙决定。能量低于带隙的光子不会被吸收,因此总是会损失。能量高于带隙的光子通常被很好地吸收,但带隙之外的多余能量会因热化过程而损失。MJSCs 的核心思想是 " 分工协作 "。通过在基板上堆叠多个不同带隙的半导体层,在各个半导体层之间制备隧穿二极管,用作不同子电池之间的低欧姆和高度透明的互连

签约蒸镀设备龙头!苏州大学两大教授团队共推叠层电池产业化来源:东吴光伏圈 发布时间:2025-09-08 09:27:33

近日,江苏教育界与产业界对话对接会在协鑫能源中心开幕。活动现场,苏州大学彭军教授团队与浙江晟霖益嘉科技有限公司签订钙钛矿/铜铟镓硒叠层太阳电池技术开发产学研项目、苏州大学王照奎教授团队与苏州方晟光电股份有限公司签订大面积商用薄膜型叠层光伏组件产业化技术及关键装备研发产学研项目。

开学啦!《轻质玻璃光伏组件技术&应用白皮书》来源:日托光伏 发布时间:2025-09-01 16:16:53

8月28日,日托光伏与旗滨集团联合发布《轻质玻璃光伏组件技术&应用白皮书》,为轻质组件的材料创新、结构升级、多元应用提供可参考、可落地的实践指南。近年来,化学钢化玻璃技术的突破,将高铁车头使用的高强度挡风玻璃移植到光伏前板,带来了全新解决方案。自2024年起,超薄化学钢化玻璃在光伏组件中实现产业化应用,具备优异的抗冲击性、耐候性和透光性,同时显著减轻组件重量。结语轻质化正在成为光伏组件的重要发展方向。

异质结3.0时代的降本提效革命:捷造科技设备技术创新与产业拐点分析来源:捷造科技 发布时间:2025-08-22 18:26:51

捷造科技通过垂直整合供应链策略,将设备创新与工艺突破紧密结合。异质结3.0时代的产业图景与技术延展性捷造科技的技术突破正值HJT技术成熟的关键阶段,其影响已超越单纯的成本下降,正在重塑整个光伏产业的技术路线图。捷造科技积极参与质结设备标准制定,推动行业从无序竞争走向协同创新。捷造科技的设备创新使这一优势得以经济性释放,加速了光伏能源对传统能源的替代进程。