当前位置:首页 > 光伏资讯 > 光伏技术 » 组件技术 > 正文

太阳电池激光划裂技术的发展趋势分析

来源:太阳能杂志发布时间:2022-05-24 07:27:43作者:徐兵、李燕

徐兵 . 太阳电池激光划裂技术的发展趋势分析. [J]. 太阳能 2021(10):8-14.

随着全球经济的发展,全球能源市场正在经历前所未有的变革。我国作为可再生能源产能大国,现已成为全球能源结构转型的主角,我国的节能减排理念与主张已得到多数国家的认可,开始从全球气候改善的参与者向引领者转变,也已成为全球可再生能源投资大国。根据相关资料显示,我国在可再生能源领域,尤其是在太阳能的光伏技术应用方面已趋于世界领先水平,光伏组件生产量占据全球 70% 以上的市场份额,“光伏应用”已成为“国家绿色名片”中的重要词汇。

从科研攻关到市场应用,从光伏利用大国到光伏利用强国,从光伏扶贫到“光伏 + 多种模式应用”的创新,我国光伏市场在全球光伏市场一路领跑。如今,通过光伏产业降本增效,以及“一带一路”、加强全球南北合作等的开展,我国光伏产业为广大发展中国家提高电力普及率,以及改善全球大气环境输出了“中国智慧”与“行动”。未来,在光伏技术与光伏市场发展的推动下,作为全球能源转型的重要力量,我国的光伏产业将发挥越来越重要的作用。

太阳电池是光伏组件中最核心的部件。随着光伏发电技术的进步,在太阳电池生产过程中,有时需要将 1 片完整的太阳电池切割成多片大小相同的小太阳电池,然后将切割后的小片太阳电池焊接成太阳电池串,从而可以提高最终制备的光伏组件的光电转换效率。太阳电池的切割通常采用划裂技术,以切割成不同尺寸规格的小片太阳电池为基础,可生产出种类繁多的新型光伏组件,例如:半片光伏组件、210 太阳电池三分片光伏组件、多片叠瓦光伏组件、板块互联光伏组件、无缝焊接多主栅光伏组件等。因此,太阳电池切割已成为光伏组件产品迭代升级中不可或缺的工艺环节。

本文详细阐述了太阳电池激光划裂技术的原理,介绍了近年来市场中常用的太阳电池激光划裂技术的原理和发展情况,并对比分析了新型的无损伤激光划裂技术与常规激光划裂技术的主要区别和各自的优、缺点。

1、太阳电池激光划裂技术的原理

太阳电池切割时的划裂技术一般采用激光划裂技术,该技术的原理示意图如图 1 所示。

太阳电池激光划裂技术的发展趋势分析

太阳电池激光划裂技术均采用激光划裂机。如图 1 所示,技术原理为:以电子放电作为供给能源,通过 He、N2、CO2 等混合气体作为激发激光发射器发射的激光的媒介,利用激光振镜聚焦激光形成激光光束,并通过改变激光光束的路径使其照射到太阳电池上,此时激光光束的光能转换为热能,且其热量大幅超过被太阳电池反射、传导或扩散的那部分热量,太阳电池中被照射位置的材料迅速熔化、汽化、烧蚀或达到燃点,从而使此处被刺穿并形成小孔;由于激光光束与太阳电池是沿一定的相对线性轨迹移动,使这些小孔能够连起来形成切缝,从而实现对太阳电池的切割。切割头 ( 激光发射器与激光振镜组装后的总称 ) 按照预定路线运动,可将整片太阳电池切割成半片太阳电池、三分片太阳电池、四分片太阳电池等。

2、常规太阳电池激光划裂技术的介绍

当前,在光伏产业采用的常规太阳电池激光划裂技术中,激光烧蚀配合机械掰片技术为主流技术。

2.1 激光烧蚀配合机械掰片技术的原理

激光烧蚀配合机械掰片技术的工艺原理是:首先利用激光光束在太阳电池背面或正面划裂出一条贯穿太阳电池表面的切割道,然后采用机械掰片法将太阳电池沿着切割道掰开。由于在常规激光划裂机中引入多刀激光划裂技术后,可将常规激光划裂机对太阳电池造成的损伤降至光伏企业可接受范围的损伤,因此激光烧蚀配合机械掰片技术是现阶段的主流技术。

2.2 机械掰片技术的种类及原理

常见的机械掰片技术包括 2 种:气缸组合式吸片机械手掰片技术、皮带输送式掰片技术。

2.2.1 气缸组合式吸片机械手掰片技术

气缸组合式吸片机械手掰片技术采用的是以气缸为动力源的机械式机构加吸盘。采用气缸组合式吸片机械手掰片技术对太阳电池进行激光切割时,为了减少对太阳电池的损伤,一般激光切割深度为太阳电池厚度的 30%~50%。由于气缸组合式吸片机械手是由多个机械吸盘分片装置组成,沿着太阳电池表面划裂出的切割道进行掰片时利用的是外界力,导致掰片后的太阳电池的切割道会有明显的毛刺,如图 2 所示。

太阳电池激光划裂技术的发展趋势分析

气缸组合式吸片机械手掰片技术的产能受到气缸动作速度的限制,一系列采用气缸组合式吸片机械手掰片技术的设备的产能极限一般为每小时划裂 2500 片整片太阳电池。

2.2.2 皮带输送式掰片技术的原理

常见的皮带输送式掰片技术包括 2 种:一种是曲面真空裂片技术;另一种是中间切割刀沿太阳电池表面的切割道划裂太阳电池的技术。这2 种皮带输送式掰片技术的前段工序均是采用激光光束切割太阳电池,切割深度约为太阳电池厚度的 40%~60%。皮带输送式掰片技术的产能与皮带输送速度有关,由于速度可调,该技术的掰片速度通常比气缸组合式吸片机械手掰片技术要快,因此具有产能增加的优势。

1) 曲面真空裂片技术是利用真空吸附已划裂出切割道的太阳电池,并将其通过输送皮带输送至曲面真空,切割后的太阳电池因受到大曲径的曲面真空吸附,太阳电池沿切割道断裂,从而实现对太阳电池的切割。曲面真空裂片技术示意图如图 3 所示。

太阳电池激光划裂技术的发展趋势分析

2) 放置在平带线中间的切割刀沿太阳电池上已划好的切割道划裂太阳电池,具体如图 4 所示。该方式一般是将整片太阳电池切割成半片太阳电池或三分片太阳电池。

太阳电池激光划裂技术的发展趋势分析

3、太阳电池激光划裂技术的发展趋势

随着超小太阳电池间距、大尺寸硅片和超低温太阳电池等工艺的产生,常规太阳电池激光划裂技术的工艺已无法满足太阳电池及光伏组件高品质的需求。因此,新型的无损伤激光划裂技术因需而生。

无损伤激光划裂技术采用无损伤激光划裂机,其解决了常规激光划裂机会不可避免地损伤太阳电池的问题。

无损伤激光划裂技术已成为太阳电池激光划裂技术的发展趋势,正在推向太阳电池主流市场,在不久的将来,该技术将主导太阳电池激光划裂市场。

3.1 无损伤激光划裂技术的原理

无损伤激光划裂技术的核心原理是利用激光热应力控制材料断裂的技术,其工艺流程为:首先在太阳电池边缘加工 1 个超小槽口;然后利用激光对太阳电池进行局部快速加热,形成激光光斑,同时利用设备配套的冷却装置对太阳电池进行局部冷却,如此会产生一个不均匀的温度场,该温度场会在太阳电池表面产生温度梯度,从而诱发热应力产生;其中激光光斑处于压应力状态,而激光光斑前、后处于拉应力状态,由于太阳电池是脆性材料,其抗压刚度远大于抗拉强度,因此当拉应力达到太阳电池的断裂强度时,会导致太阳电池发生断裂;断裂会随着激光照射及后续冷却的移动轨迹从最初在太阳电池边缘加工的超小槽口开始稳定扩张,最终完成对太阳电池的切割。

3.2 无损伤激光划裂技术与常规激光划裂技术的对比

下文从太阳电池的表面形貌、加工产生的粉尘量、加工温度、太阳电池性能测试 4 个方面对无损伤激光划裂技术与常规激光划裂技术的主要区别和各自的优、缺点进行对比分析。

3.2.1 太阳电池的表面形貌

1) 常规激光划裂技术会在太阳电池表面烧蚀形成切割道,该切割道的宽度为 30 μm、深度为60~90 μm,同时太阳电池表面的横向热影响区宽度会扩展到 70~80 μm。

2) 无损伤激光划裂技术切割的太阳电池的截断面干净、不存在损伤点,主要原因在于无损伤激光划裂技术在对太阳电池进行切割时不存在激光烧蚀的过程。

3.2.2 加工产生的粉尘量

1) 采用常规激光划裂技术时需去除太阳电池表面切割道内的硅粉尘。由于该技术在对太阳电池切割时会产生大量的硅粉尘,因此需要配置经过特殊设计的除尘装置,否则容易引起火灾。

2) 采用无损伤激光划裂技术时产生的硅粉尘数量很少,可忽略不计。

3.2.3 加工温度

1) 采用常规激光划裂技术切割太阳电池时,激光光斑温度可达 400~500 ℃。

2) 采用无损伤激光划裂技术切割太阳电池时,加工温度需控制在 150~250 ℃范围内,属于低温加工工艺。

3.2.4 太阳电池性能测试

分别对采用无损伤激光划裂技术与常规激光划裂技术切割的太阳电池进行性能测试,并对测试结果进行对比分析。

1) 三点抗弯强度测试。与整片太阳电池的三点抗弯强度相比,采用无损伤激光划裂技术切割后的太阳电池的三点抗弯强度几乎保持不变,而采用常规激光划裂技术切割后的太阳电池的三点抗弯强度下降了 10% 以上。

该数据进一步证明了无损伤激光划裂技术解决了常规激光划裂技术在切割过程中对太阳电池造成的损伤问题,采用无损伤激光划裂技术有利于实现光伏组件加工过程中破片率的控制和返修率的控制,同时可加强光伏组件在长期户外应用环境下的可靠性,进而可降低光伏发电企业的成本。无损伤激光划裂技术的上述优点有利于大尺寸硅片和切割成三分片及更小尺寸电池等新工艺在光伏产业内的导入。

2) 太阳电池电性能测试。相对于常规激光划裂技术,无损伤激光划裂技术的热损伤降低,使采用无损伤激光划裂技术切割的太阳电池制备的光伏组件的功率有小幅提升,提升幅度约为2%~3%。

3.3 无损伤激光划裂技术的瓶颈

由于无损伤激光划裂技术是近几年才兴起的新技术,技术尚未成熟,还存在一些技术瓶颈,比如:划裂不到位、产能不高等。造成这些技术瓶颈的原因主要在于:

1) 与无损伤激光划裂机配套的冷却装置一般采用冷却水,并将其喷洒到太阳电池加热区域附近,但由此产生的温度梯度有时会不太明显,从而导致太阳电池划裂不到位。

2) 喷洒的冷却水会残留在太阳电池表面,需要进行相应的加热过程,以蒸发这些残留的冷却水,但这一工序较耗时,会影响采用无损伤激光划裂技术的设备的产能。

4、结论

本文阐述了切割太阳电池时常用的激光划裂技术的原理,并分析和对比了常规激光划裂技术和无损伤激光划裂技术的优、缺点。根据分析结果,相对于现在业界采用的常规激光划裂技术,无损伤激光划裂技术具有较多的技术优势。随着无损伤激光划裂技术的逐渐成熟,其将在未来光伏产业设备中得到大规模应用。

太阳电池激光划裂技术的发展趋势分析

责任编辑:周末

特别声明:
凡本网注明来源: "索比光伏网或索比咨询"的所有作品,均为本网站www.solarbe.com合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。

经本网授权使用作品的,应在授权范围内使用,并注明来源: "索比光伏网或索比咨询"。违反上述声明者,本网将追究其相关法律责任。
推荐新闻
太阳电池的未来技术会是什么?

太阳电池的未来技术会是什么?

太阳电池的未来技术究竟会是什么?今天之所以想简单聊下这个话题,是因为按照目前光伏技术的发展趋势,不出意外的话,在接下来的3-4年内,无论是基于n型TOPCon,硅异质结(SHJ)或者BC技术的单结晶硅电池都会先后达到量产效率极限。笔者认为单结晶硅电池的量产效率极限应该在27.5-27.8%左右,且这三种技术的量产极限效率差异也不会太大(最高和最低的差距预期在0.6%以内)。

恒卓光伏太阳电池
2024-11-11
金阳新能源申请背接触异质结太阳电池专利

金阳新能源申请背接触异质结太阳电池专利

国家知识产权局信息显示,金阳(泉州)新能源科技有限公司申请一项名为“背接触异质结太阳电池及其制备方法、电池组件”的专利,公开号 CN 118825138 A,申请日期为2024年9月。

金阳新能源异质结太阳电池
2024-10-30
31.6%!钙钛矿硅叠层电池新记录

31.6%!钙钛矿硅叠层电池新记录

近日,弗劳恩霍夫太阳能系统研究所(ISE)的研究人员开发了一种功率转换效率为31.6%的钙钛矿硅太阳电池。

钙钛矿硅太阳电池
2024-10-09
汉可共青城高效N型异质结太阳电池关键核心设备产业化项目获批复

汉可共青城高效N型异质结太阳电池关键核心设备产业化项目获批复

据江西省投资项目在线审批监管平台显示,位于江西共青城高效N型太阳电池关键核心设备产业化项目于9月20日通过备案。

N型太阳电池异质结太阳电池
2024-09-27
与光同行“碳”路未来 隆基获首张中国CTCC交通光伏组件性能认证证书

与光同行“碳”路未来 隆基获首张中国CTCC交通光伏组件性能认证证书

2024年7月25日,“光伏+交通“行业深度融合会暨隆基绿能嘉兴灯塔工厂参观交流会在嘉兴拉开帷幕,公路科学研究院、北京交通大学电气工程学院、招商公路、中交光伏科技公司、中铁高速管理公司、公路学会、中公通达(北京)认证中心有限公司等50余位交通行业代表嘉宾沉浸式参观隆基灯塔工厂,共话绿色交通新动能。

隆基绿能光伏+光伏应用
2024-07-29
高速“加电!”:江苏容量最大高速公路光伏发电项目竣工

高速“加电!”:江苏容量最大高速公路光伏发电项目竣工

7月23日,中国能建中电工程江苏院总承包的东部高速和宁靖盐高速公路光伏发电项目竣工验收。该项目是江苏省内最大交能融合项目,采用“光伏+高速路网”模式,利用交通枢纽场站及沿线设施建设分布式光伏电站,为交通基础设施提供绿色电力,推动绿色能源与交通深度融合。

中国能建光伏应用光伏电站EPC
2024-07-26
2024世界太阳能光伏暨储能产业博览会即将盛大开幕!

2024世界太阳能光伏暨储能产业博览会即将盛大开幕!

随着时间的临近,全球太阳能光伏及储能行业的关注度日益升温,所有的目光都聚焦在即将于8月初举办的2024世界太阳能光伏暨储能产业博览会上。这场盛会不仅是行业内部的年度盛事,更是全球范围内关注可持续能源发展的各界人士共同期待的重要时刻。

太阳能光伏光伏应用光储产业
2024-07-24
印度90亿美元屋顶光伏计划面临多重挑战

印度90亿美元屋顶光伏计划面临多重挑战

印度正积极推进屋顶光伏的安装,并出台了新的补贴政策以激励国内制造商。然而,这一宏伟计划并非“万能良药”,其实施过程中将面临多重因素的制约。

光伏系统光伏应用
2024-07-08
出货量第八!一道新能稳稳拿下

出货量第八!一道新能稳稳拿下

日前,多家专业媒体及权威机构公布了2024年前三季度光伏组件出货量排行榜,凭借稳健的业绩增长和高效的产能保障,一道新能再度上榜,稳居前十。一道新能的实力体现在哪些方面?面对竞争激烈的行业内卷,我们坚守创新驱动与稳健前行的策略,交出了亮眼的答卷。

一道新能光伏行业光伏组件
2024-11-09
9月中国光伏组件出口环比下降12%!

9月中国光伏组件出口环比下降12%!

InfoLink海关数据显示,2024年9月中国共出口约16.53GW的光伏组件,相比8月的18.76GW环比下降12%,与去年9月19.79GW相比下降16%。今年三季度中国共出口54.9GW的光伏组件,环比二季度的64.25GW下降15%,对比去年同期51.58GW上升约6%。而今年1-9月,中国累计出口约186.77GW的光伏组件,对比去年同期的157.65GW上升18%。

光伏组件
2024-11-08
晶科能源助力!2800余块太阳能光伏组件在曼城巧儿宜球场顺利建成!

晶科能源助力!2800余块太阳能光伏组件在曼城巧儿宜球场顺利建成!

日前,曼城女足主场巧儿宜球场已有2800余块光伏组件顺利安装并投入使用。巧儿宜球场已经成为曼彻斯特市区最大的光伏发电项目之一。该工程的顺利完工见证了城市足球集团正在积极推进的太阳能项目的里程碑时刻。总项目全面建成后,城市足球学院(City Football Academy)将总计安装落地超过10500块光伏组件。

晶科能源光伏组件光伏发电项目
2024-11-08
突发利好,天合光能资产置换美国上市公司股份

突发利好,天合光能资产置换美国上市公司股份

11月6日晚,天合光能公告其与FREYR Battery, Inc.(以下简称“FREYR”)达成资产置换和经营合作,FREYR通过支付现金和现金等价物和股权置换等一揽子资产置换交易,获得Trina Solar US Manufacturing Module 1, LLC(

天合光能光伏组件光伏企业
2024-11-06
返回索比光伏网首页 回到太阳电池激光划裂技术的发展趋势分析上方
关闭
关闭