共蒸镀钙钛矿太阳能电池效率达到20.6%

来源:pv-magazine发布时间:2021-09-15 13:53:06

来自新加坡南洋理工大学能源研究所的科学家们开发出一种共蒸镀钙钛矿太阳能电池,具有强大的电力转换效率和良好的热稳定性。

研究员Annalisa Bruno告诉《光伏》杂志,“这些电池可用于各种应用。在我们的研究中,我们首次证明了热蒸镀工艺在为不同架构定制钙钛矿吸收体方面的多功能性。” 电池采用“p-i-n”布局,依靠共蒸镀的MAPbI 3薄膜。研究人员采用的这种共蒸镀工艺允许生产分级的可定制的钙钛矿层,而无需增加额外层数或额外的钝化步骤。在蒸镀过程中,背景压力会慢慢降低,以达到所需的费米能级,这就确保了辐射能量向电化学能量的有效转换。

在形成电池钙钛矿吸收体的共蒸镀过程中,控制和监测碘化铅(PbI2)和甲基碘化铵(MAI)的生长和组成是这个制造步骤的主要挑战。他们在电池上测试了不同的电子和空穴传输材料(HTM)。性能最好的电池有一个由[2-(3,6-二甲氧基-9H-咔唑-9-基)乙基]膦酸制成的HTM,它也被称为MeO-2PACz。

基于自组装单层(SAM)MeO-2PACz的最优电池实现了研究者们所描述的20.6%的创纪录效率,而基于2,2,7,7-四(N,N -二对甲苯基)氨基-9,9-螺二芴(spiro-TTB)和聚(三芳胺)(PTAA)作为HTM的两种不同电池,效率均达到20.3%。

该研究小组透露,“使用三种不同空穴传输层(HTL)的钙钛矿太阳能电池的功率转换效率分布很窄,这突出了这些共蒸镀电池的良好可重复性。”当spiro-TTB被放大到1cm2和1.96cm2的尺寸时,其效率分别达到19.1%和17.2%。

研究人员说:“这些未封装的共蒸镀p-i-n钙钛矿太阳能电池表现出显著的长期稳定性,在室温下存放超过1000小时,仍能保持其初始电力转换效率的90%。”

根据Bruno的说法,这些大面积电池是这种尺寸的共蒸镀钙钛矿太阳能电池中迄今为止最有效的。据说这些电池还具有可观的热稳定性,因为它们在持续500小时的85摄氏度热老化后保持了80%以上的初始效率。

她评价说,“鉴于过去几年热共蒸镀钙钛矿电池的研发进展,我们有希望看到这些电池在未来几年内达到商业化。”

科学家们在最近发表于《先进功能材料》(Advanced Functional Materials上)《具有分级费米层的共蒸镀MAPbI3可实现高性能、可扩展和灵活的p-i-n钙钛矿太阳能电池》一文中描述了这种电池及相关的制造技术。


索比光伏网 https://news.solarbe.com/202109/15/343777.html
责任编辑:qypsolarbe
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
华为首个钙钛矿电池专利申请公开!助力3C数码未来发展!来源:钙钛矿工厂 发布时间:2025-12-29 17:24:36

近日,华为技术有限公司在国家知识产权局申请了一项名为“钙钛矿电池及其制备方法和应用”的专利,这一消息无疑将为电池技术领域带来新的发展契机。华为的钙钛矿电池技术的突破,将可能改变现有电池市场格局,为消费者带来更好的使用体验。总结来看,华为的钙钛矿电池专利不仅是其在电池技术上的一次重要尝试,更是对未来3C数码产品发展的积极推动。

通威受邀出席第十届钙钛矿科技创新与生态共赢战略发展论坛来源:通威集团 发布时间:2025-12-29 08:40:59

12月22-24日,由光伏领跑者创新论坛主办的第十届钙钛矿科技创新与生态共赢战略发展论坛在安徽合肥举行。通威股份光伏技术中心资深研发工程师罗皓文博士受邀出席,并作主题演讲,分享创新成果,推动产业合作。通威将继续深化光伏技术研发,推动钙钛矿晶硅叠层电池技术从实验室走向规模化量产,为实现“双碳”目标贡献通威力量。

极电于振瑞:打破零和博弈思维,以求同存异推动钙钛矿产业链共生共荣来源:极电光能 发布时间:2025-12-26 11:05:09

作为全球钙钛矿产业化先锋,极电光能联合创始人、总裁于振瑞博士受邀出席,并做了题为《钙钛矿光伏产业化关键问题思考》的主题报告。他结合一线的产业实践经验,系统性分享了钙钛矿技术迈向成熟规模化应用的若干思考,并呼吁行业打破零和博弈思维,以协同创新引领光伏行业生态共生共荣。

西交大梁超AM:29.14%! 全钙钛矿叠层电池! 四硫富瓦烯原位双界面调控实现高效Sn-Pb及全钙钛矿电池!来源:钙钛矿人 发布时间:2025-12-26 10:48:30

西安交通大学梁超等人提出一种原位双界面调控策略:在前驱体溶液中引入平面刚性电子给体四硫富瓦烯(TTF)。TTF与锡-铅钙钛矿前驱体组分间的电子给-受相互作用,辅以TTF原位自组装在钙钛矿体相及上下界面的双重富集,协同调控结晶动力学、均化Sn氧化态、促进载流子在体相与双界面处的抽取与输运,并稳固钙钛矿晶格。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

AFM:双重奏效!FAPbBr₃钙钛矿电池开路电压跃升至1.60V,光解水效率突破6.5%来源:知光谷 发布时间:2025-12-23 10:02:56

宽带隙甲脒铅溴钙钛矿太阳能电池在单结吸收体实现无辅助光驱动水分解方面具有潜力。FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。研究亮点:双重钝化协同增效:体相添加FASCN促进晶粒生长,表面处理PDAI钝化界面缺陷,显著抑制非辐射复合,开路电压提升至1.53V。

港科大周圆圆、港理工蔡嵩骅等人NC:揭秘钙钛矿电池性能的“隐形杀手”——晶内杂质纳米团簇来源:先进光伏 发布时间:2025-12-22 16:29:28

香港科技大学周圆圆、香港理工大学蔡嵩骅等研究团队,通过低剂量扫描透射电子显微镜首次在铯掺杂混合阳离子钙钛矿薄膜中,发现了一种新型亚稳态晶粒内杂质纳米簇。核心技术亮点首次发现晶粒内隐藏杂质:利用超低剂量扫描透射电镜,首次在原子尺度上直接观测并解析了隐藏在钙钛矿晶粒内部的亚稳态ABX型杂质纳米团簇的晶体结构。

抑制PEDOT:PSS相分离以提升柔性全钙钛矿叠层太阳能电池效率来源:钙钛矿材料和器件 发布时间:2025-12-22 13:45:15

Empa、四川大学、国立清华大学、FluximAG、苏黎世联邦理工学院和斯洛伐克科学院的研究人员证明,超薄PEDOT:PSS中的垂直相分离会产生界面偶极,限制柔性钙钛矿叠层电池性能,而将曲拉通加入PEDOT:PSS可抑制这些偶极子并提升器件效率。柔性全钙钛矿叠层太阳能电池和微型模块。本研究不仅揭示了PEDOT:PSS中界面偶极子作为钙钛矿叠层中的隐藏损耗机制,还提供了一种可扩展的克服方法。

密西根大学龚曦文最新JACS::多层结构解析与再沉积策略实现高效稳定钙钛矿电池来源:先进光伏 发布时间:2025-12-22 09:02:57

研究发现,传统认知中的“单分子层”实则为多层结构,而钙钛矿制备中常用的DMF溶剂可洗脱超过50%的SAM分子,其中近半数直接来自与ITO基底结合的第一层。Figure4展示了再沉积策略对增强SAM稳定性的多重效益及其界面机制。未来,通过进一步优化SAM分子设计以增强层内与层间相互作用,并结合大面积均匀沉积工艺,有望在更复杂的叠层电池结构中实现界面效率与稳定性的协同提升。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。

AEM:定制COF非骨架基团同步调控铅、碘、有机阳离子,打造高效稳定钙钛矿电池来源:知光谷 发布时间:2025-12-19 09:28:35

研究亮点:首次提出通过调控COF非骨架基团实现“全组分离域结晶”策略,-F基团诱导的局部电荷不对称分布可同时与PbI(配位)、FA(氢键)和I相互作用,显著延缓结晶过程并提升薄膜质量。