有效缓解锂体积膨胀和抑制锂枝晶生长 北理工在锂金属复合负极方向取得新进展

来源:北京理工大学发布时间:2021-08-31 12:07:31

近日,国际材料领域期刊《Advanced Energy Materials》(影响因子29.368)报道了北京理工大学前沿交叉科学研究院黄佳琦课题组在锂金属复合负极方向研究的新进展,相关研究成果以“Deciphering the Effect of Electrical Conductivity of Hosts on Lithium Deposition in Composite Lithium metal Anodes”为题在线发表。该工作第一作者为北京理工大学前沿交叉科学研究院博士研究生詹迎新,通讯作者为北京理工大学黄佳琦教授。

金属锂有着极高的理论比容量(3860 mAh g−1)和极低的还原电极电势(−3.040 V vs. 标准氢电极),被认为是高比能二次电池的理想负极材料之一。然而,金属锂在反复的沉积/脱出过程中容易形成锂枝晶和发生体积膨胀等问题,导致锂金属电池的库仑效率低,循环寿命短。将三维骨架结构引入锂金属负极中,形成复合锂金属负极,可以有效缓解锂的体积膨胀和抑制锂枝晶的生长。但是,不同的骨架结构具有不同的参数(导电性,亲锂性,孔曲折度等),而骨架的优势往往都是通过各个影响因素的耦合作用实现的。由于骨架各个参数之间的耦合,无法准确理解骨架的单个影响因素对锂沉积行为的影响,严重阻碍了骨架结构的合理设计和开发利用。为了探究骨架结构的理性设计原则,需要对骨架结构中众多的影响因素进行解耦,解析骨架单个影响因素对锂沉积行为影响。

以解耦骨架导电性的影响为例,该团队运用实验解耦和相场模拟结合的方法探究了复合锂金属负极中骨架导电性对锂沉积行为的影响。通过在导电骨架表面原位形成聚合物超薄涂层来调控骨架的电导率,同时保持其他参数不变。在考虑实用化条件的情况下,选择铜网(CM)和碳纤维(CF)两种典型骨架材料进行导电性影响的探究。

640.webp

图1. (a) 不同骨架导电性与电池循环性能的关系总结图;(b) 锂在导电与不导电骨架上沉积形貌的示意图。

与低导电性的骨架材料相比,高导电性的骨架材料可以显著提高多种实用电池体系的循环性能(图1)。因为导电骨架可以充分利用其导电表面,增加锂的沉积位点,降低局部电流密度,而且高导电性的骨架可以使骨架周围的电势均匀分布,进而诱导锂离子的均匀输运,使得锂离子在导电骨架表面沉积均匀。此外,在含锂的复合负极中,全电池循环性能还与骨架单位截面孔体积密切相关,骨架导电性的影响会随骨架单位截面孔体积的增大而减弱。这种解耦方法为探究单一参数在骨架中的作用提供了一种新方法,该方法也可广泛应用于探索骨架的其他影响因素,如亲锂性和孔隙结构等。

索比光伏网 https://news.solarbe.com/202108/31/343246.html

责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
横店东磁:拥有8GWh锂电池产能,应用于便携式储能等领域来源:索比光伏网 发布时间:2025-11-18 09:44:03

11月17日,横店东磁在投资者互动平台上回答投资者提问时表示,公司锂电池产业具备年产8GWh产能,主要应用于电动二轮车、电动工具、便携式储能、智能家居类等小动力领域。光伏产业具备年产23GW电池和21GW组件,通过持续聚集差异化和国际化布局,注重创新和技术的领先性,深挖内部潜力以降本提质,以及前瞻性做好供应链布局等,具备较好的综合成本优势。

福建构建电动船舶“江河湖海”应用绿色转型样板来源:英飞源 发布时间:2025-10-22 17:17:23

作为电动船舶发展的先行区,福建通过政策引导、技术攻关与商业模式创新,系统推进电动船舶在“江河湖海”不同水域的应用,为我国水上交通绿色转型提供了可资借鉴的样本。今年以来,福建电动船舶示范项目密集落地。游船均采用英飞源充电桩,从对渡观光到文旅巡航,电动船舶的应用场景正在福建不断丰富。在政策引导下,福建正加快构建电动船舶产业生态。从闽江到长江,从湖泊到海洋,电动船舶的应用正逐步拓展。

清华大学材料学院-林红团队合作在钙钛矿太阳能电池研究领域取得新进展来源:钙钛矿材料和器件 发布时间:2025-10-21 13:58:54

近日,清华大学材料学院林红教授团队合作在柔性钙钛矿太阳能电池埋底界面二甲基亚砜残留去除方面取得重要研究进展。动态接触角,热重分析及红外光谱等综合分析表明IDPAC分子能够通过化学钝化削弱SnO2与PbI2对DMSO的吸附作用,从而获得埋底界面孔洞消除、残余应力应变松弛的高质量柔性钙钛矿薄膜。清华大学材料学院2022级博士生张子灵为论文第一作者,清华大学材料学院教授林红和厦门大学教授李鑫为论文通讯作者。

大连理工大学边继明和王敏焕课题组在钙钛矿太阳电池方面取得突破性进展来源:钙钛矿材料和器件 发布时间:2025-10-15 13:49:41

作为最受期待的新型光伏技术之一,钙钛矿太阳电池在过去十年中取得了前所未有的巨大突破。从刷新世界纪录的叠层效率,到超长时程的稳定运行,大连理工大学物理学院科研团队在钙钛矿光伏领域的系列突破,是我国在新材料、新能源领域坚持自主创新、勇攀科学高峰的生动缩影。王敏焕于2020年6月博士毕业于大连理工大学微电子学院,现为边继明教授课题组老师,十年来一直致力于金属卤化物钙钛矿材料及其器件性能的相关研究。

四川仁寿县委县政府致信祝贺协鑫锂电“大满贯”来源:协鑫集团 发布时间:2025-09-17 13:57:34

9月16日,四川省仁寿县委、县政府专门给协鑫集团发来贺信,祝贺集团旗下四川协鑫锂电科技有限公司投产以来,依靠全球独创的GCL-PHY一步物理法工艺制造磷酸铁锂新材料,经过一年的工艺升级、品质提档、产能爬坡,取得骄人业绩。据悉,眉山市、仁寿县两级党委、政府始终将协鑫锂电项目视为重点培育目标,各级各部门给予全方位零距离服务与支持。

清华大学材料学院林红团队合作在钙钛矿太阳能电池研究领域取得新进展来源:钙钛矿材料和器件 发布时间:2025-09-12 14:10:31

清华新闻网9月11日电金属卤化物钙钛矿因其优异的光电性能和溶液法加工特性,已成为光伏领域中最具发展前景的材料体系之一。近日,清华大学材料学院林红教授团队合作在钙钛矿太阳能电池埋底界面二甲基亚砜残留去除方面取得重要研究进展。清华大学材料学院2022级博士生杨剑飞为论文第一作者,清华大学材料学院教授林红和武汉大学教授王植平为论文通讯作者。

锂掺杂剂迁移引发钙钛矿太阳能电池不稳定性来源:钙钛矿材料和器件 发布时间:2025-09-05 14:00:58

南京工业大学和中山大学的研究人员研究了锂阳离子掺杂剂如何影响钙钛矿太阳能电池,揭示了现实的明暗循环过程中的临界不稳定性。为了解决这种不稳定性,研究人员用甲基铵取代锂作为空穴传输层掺杂剂;甲基铵没有迁移或未反应的残留物,保持了钙钛矿相的完整性。这项工作强调了锂驱动的相降解是钙钛矿稳定性的隐藏威胁,并提出了甲基铵掺杂作为一种稳健的解决方案,为在现实条件下设计耐用的钙钛矿太阳能电池制定了清晰的策略。

南京工业大学Nature Energy:锂掺杂剂替代策略破解钙钛矿太阳能电池昼夜循环稳定性难题来源:先进光伏 发布时间:2025-09-02 11:47:05

研究意义破解昼夜循环稳定性瓶颈:首次明确锂迁移是明暗交替条件下器件失效的主因,并提出有效替代方案。结论展望本研究通过揭示锂离子在昼夜循环条件下的迁移与相变机制,提出并验证了一种新型无锂掺杂剂MATFSI,成功解决了钙钛矿太阳能电池在实际运行中的稳定性瓶颈。

三一硅能与永煌锂业携手,共拓国际光储合作新局来源:三一硅能 发布时间:2025-08-06 14:41:47

近日,三一硅能与永煌锂业于长沙举行签约仪式,三一集团董事、三一硅能董事长代晴华,微电网投资开发公司总经理许中天,永煌锂业董事长刘永辉、总经理张雪峰等领导齐聚,共同见证双方就新能源业务拓展及全球市场布局展开全方位深度合作,并签署尼日利亚永煌锂业EP+F项目设计和设备采购协议。永煌锂业计划在尼日利亚建设先进构网光储系统,满足自身用电需求。

晶科储能与亿纬锂能联合电芯工厂正式量产 年产能5GWh保障储能业务高速增长来源:晶科能源JinkoSolar 发布时间:2025-08-05 09:19:58

近日,全球领先的储能企业晶科储能与锂电龙头亿纬锂能共同宣布,双方的联合储能专用电芯工厂正式进入量产阶段。该工厂于2025年5月完成全链路设备调试,6月产线全面投运,将为晶科储能每年供应5GWh314Ah储能电芯,亿纬锂能将派驻专家协助联合工厂快速达到行业卓越工厂水平,全面满足晶科储能在全球市场高速增长的储能业务需求。

昆明理工大学黄惠&陈江照最新AM:原位构筑稳健层状金属有机复合物实现高性能反式钙钛矿太阳能电池晶界稳定化来源:先进光伏 发布时间:2025-08-01 09:13:14

紫外光电子谱证实其使钙钛矿功函数降低0.48eV,形成更优电子抽取界面,彻底消除PbI的0.7eV界面势垒。载流子动力学全面优化:原位PL监测显示2-IM将钙钛矿结晶速率降低87%,缺陷形成率下降60%。结论展望本研究利用2-IM将光热不稳定的PbI残留物原位转化为六方层状金属有机复合物2-IMPbI。