太阳能电池片应力测试系统的设计 使检测数据更加精确

来源:太阳能杂志发布时间:2018-06-20 10:23:53

机械载荷测试是光伏组件的一个重要测试项目,电池片的机械强度对组件的机械载荷测试有一定程度的影响,所以在做成组件前对不同的电池片做应力分析非常重要,在新产品研发过程中也可作为一项测试项目,以保证后续组件测试的顺利进行。本文根据测试需求而研制出一款四点弯曲检测电池片应力的机台。

太阳电池应力测试

所设计的太阳电池应力检测系统主要由供电系统、压力感应系统、压力变送系统、运算控制系统和界面操作系统等组成。结构框图见图1。

供电系统为整个系统提供电源,包括保护装置、变压模块等。控制核心元件主要是压力感应系统,用来检测电池片在受压时的数据。压力变送系统是将压力感应系统的压力信号变成电信号,然后传送到运算控制系统。运算控制系统是整个系统的重要部分,它将压力变送系统发来的电信号通过运算控制系统的A/D 模块进行数字转换,再通过界面操作系统进行显示,并且可对设备的运行进行控制。界面操作系统主要包括触摸屏的组态软件,通过和PLC(可编程控制器)进行通讯,相互采集数据,同时也可通过面板按键对控制单元进行控制,操作人员通过操作界面上的按键控制设备的运行,并在界面显示相关报表数据等[2]。


压力感应系统介绍

压力感应系统是整体设备主要检测元件,主要是感应工作时的压力数据。检测系统包括上压板和上压条、下压板和下压条,以及压力传感器等。压力感应系统结构框图如图2 所示。


上压板部分是通过伺服电机带动上压板和上压条向下位移,下压板部分包括下连接板、压力传感器、下压板和下压条;上压条和下压条之间的间距可根据待检电池片的薄厚进行调节。压力传感器是电池片受到感应压力,传送数据的感应元件。

运算控制系统

运算控制系统主要由松下的伺服电机、三菱的PLC 单元、镂空拱状承载装置和压力传送装置等组成。如果运算控制系统检测精度不够就会造成检测误差[3,4]。电池片检测步骤如图3所示,其中,图3a 是将待测电池片放置到下压条上;图3b 是电池片在受到一定压力时的形变过程;图3c 是电池片受压达到极限时就会爆裂,在爆裂后检测步骤完成。

 


控制系统介绍

控制系统是由两种运行模式组成:手动模式和自动模式。手动模式是通过手动控制伺服系统步进式进行位移,可观察不同弯曲时的位移值和压力值;自动模式是采用一键式操作,检测时直至电池片爆裂后数据采集完毕,伺服控制系统自动回原点。电池片应力检测过程如图4 所示。


操作系统介绍

在本设计中,使用触摸屏一体机来实现操作和显示,触摸屏界面主要显示工作时的压力数据和曲线,显示太阳电池片的压力值和位移值等;操作按键实现检测系统和传送系统的操作;独立的显示界面将操作界面和曲线界面、报表界面单独显示。

在检测过程中不可或缺的就是触摸屏操作界面,界面上有硬件控制、压力和位移的实时数据信息采集,以及历史数据的保存等功能。在测试过程中,压力传感器会不断的采集数据,所采集的数据通过程序进行运算,运算结果以报表的形式导出,导出的数据可以分析不同压力电池片的应力,实现数据导出[5,6]。实时曲线显示功能可显示在数据采集时的数据曲线,整体设备占用空间小,单人可实现机台操作,主要元件的检测精度小于0.001,设备故障率低;数据采集主要以Excel 报表格式输出,方便操作人员采集数据,分析性能。组态界面操作及变量显示过程如图5所示[1,2]。


结论

本文是根据电池片的检测需求而设计的一款可检测电池应力的设备,机械结构设计采用新型的铝制镂空拱状球形结构,并采用高精度的压力感应系统、精确的检测单元和传送系统,以及触摸屏显示单元;可检测任何栅线的电池片和较厚的原料电池片,实现整个系统综合设计功能。此设备主要检测电池片在受机械载荷时的形变及在形变过程中所受应力的大小,设计的压条间距可根据检测电池片的薄厚进行调节且对电池的大小和栅线不做限制;通过PLC 作为数字运算的关键部分,伺服电机作为传送的控制单元,使太阳电池片的检测数据更加精确。本文所设计的电池片应力测试机台可以满足电池片应力检测需求,为晶硅光伏组件的机械载荷测试提供有力保障。

索比光伏网 https://news.solarbe.com/201806/20/289218.html

责任编辑:suna
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
成都理工大学彭强EES: 介电分子桥使26.60%的高效耐用倒置钙钛矿太阳能电池具有高反向击穿电压来源:先进光伏 发布时间:2025-12-02 14:16:40

实验结果表明,F-CPP处理后的钙钛矿薄膜介电常数提升约2倍,器件瞬态反向击穿电压达-6.6V,为银基钙钛矿太阳能电池中的最高值之一。结论展望本研究通过引入F-CPP介电分子桥,成功实现了钙钛矿太阳能电池效率与反向击穿电压的双重突破,首次系统解决了钙钛矿电池在实际应用中的反向偏压稳定性难题。

南航赵晓明AEM:调控配体吸电子效应设计配体反应性以实现户外稳定的钙钛矿太阳能电池与组件来源:知光谷 发布时间:2025-11-27 13:47:25

2D/3D钙钛矿异质结构提升了钙钛矿太阳能电池的性能。本文南京航空航天大学赵晓明等人研究了芳香铵配体的吸电子强度对钙钛矿界面稳定性的影响。此外,组件在30天户外运行中保持稳定的功率输出,显示出其在实际应用中的潜力。研究亮点:配体吸电子能力调控界面稳定性:通过杂环中氧原子数量的增加,系统调控芳香铵配体的吸电子能力,最强吸电子配体ABDI有效抑制2D相形成并阻止离子互扩散。

上海交通大学王天富Nature Sustainability:绿色溶剂使钙钛矿太阳能电池具有高效率的可扩展加工来源:矿物薄膜太阳能电池 发布时间:2025-11-12 09:49:24

论文提出以生物质衍生的绿色溶剂γ- 戊内酯(GVL)为钙钛矿前驱体溶剂、乙酸正丁酯(BAc)为反溶剂,解决了传统有毒溶剂(DMF/DMSO)的环境危害与前驱体不稳定问题;GVL 基 FAPbI₃前驱体墨水可稳定储存一年,结合三丁基甲基碘化铵(TBMAI)形成的一维钙钛矿类似物(perovskitoid)钝化缺陷,最终小面积钙钛矿太阳能电池(PSCs)功率转换效率(PCE)达25.09%,12.25 cm²迷你模组经认证效率20.23%,为PSCs 规模化绿色制备提供关键方案。

山东大学殷航教授、郝晓涛教授、张茂杰教授、北航孙艳明教授最新NC:关键长度筛选使厚膜有机太阳能电池的效率达到19%来源:印刷钙钛矿光电器件 发布时间:2025-11-10 08:31:26

鉴于此,山东大学殷航教授、郝晓涛教授、张茂杰教授和北航孙艳明教授等人近期在期刊《NatureCommunications》发文,题为“Criticallengthscreeningenables19%efficiencyinthick-filmorganicsolarcells”。研究提出了一种实验方案,将“临界长度”确定为决定厚膜有机太阳能电池性能的关键因素。创新点:1.提出“临界长度”作为厚膜有机太阳能电池受体的筛选指标,综合考量零场迁移率、跳跃频率与场依赖性,突破传统单一迁移率筛选的局限性。

低温焊料可能引发无主栅光伏组件性能的大幅衰减来源:建筑光伏与碳中和技术 发布时间:2025-11-07 14:26:16

梅耶博格的“SmartWire”是光伏组件无主栅互联的主流技术路线之一。有学者研究发现,SmartWire所使用的低温焊料与电池片栅线的连接可能存在缺陷,从而造成组件在高温天气下的性能异常衰减。资料/图:J.Hartleyet.al.研究团队由此指出,SmartWire技术中的低温焊料互联工艺存在不足,有可能导致组件在高温下的性能异常衰减;而IEC61215/61730标准中的序列测试,是针对串焊工艺设计的;对于SmartWire类型的组件,需要设计新的序列测试,才能更准确地模拟这类组件的长期耐候性。

空穴注入层中掺杂氧化石墨烯使碳电极钙钛矿太阳能电池的效率达到23.6%来源:钙钛矿材料和器件 发布时间:2025-11-07 13:54:36

在低温加工下的碳基钙钛矿太阳能电池因其增强的稳定性和经济高效性而受到关注。然而,这些优点往往被器件性能下降所抵消,主要原因是空穴传输层与碳电极之间的电荷传输效率低。箭头表示空穴传输的方向。有机–无机杂化钙钛矿太阳能电池在过去十年中其光电转换效率经历了显著提升,从3.8%上升至27.0%。此外,Spiro-OMeTAD与碳电极之间的接触不良限制了界面电荷转移,导致器件性能下降。

新型偶极钝化方法使全钙钛矿叠层太阳能电池的效率达到30.1%来源:钙钛矿材料和器件 发布时间:2025-10-29 14:00:47

同时,偶极钝化有效减轻了叠层器件互连层引入的NBG子电池的接触损耗,在全钙钛矿串联太阳能电池中表现出创纪录的30.6%的PCE。这标志着多晶薄膜太阳能电池的效率首次超过30%。

武汉大学闵杰教授团队Joule综述:从非富勒烯受体分子设计到产业应用的有机光伏技术发展蓝图来源:知光谷 发布时间:2025-10-29 08:59:58

这种综合评估理念正在逐步获得学术界与产业界的广泛认同,为推动技术的实用化发展提供了重要指导。研究表明,非富勒烯受体材料的降解主要源于光氧化和分子异构化等机制。然而,近期的研究表明形貌演变更多地受动力学机制支配。

西北工业大学Angew:分子设计驱动的界面工程实现钙钛矿太阳能电池中缺陷钝化与空穴提取的同步提升来源:知光谷 发布时间:2025-10-24 09:20:54

界面工程已成为解决钙钛矿与空穴传输层之间界面缺陷和能级失配问题的有效策略。该空穴界面分子设计策略为实现钙钛矿太阳能电池的高效率和高运行稳定性提供了可行路径。

AEM:界面电荷提取缺陷的简易检测方法及其在钙钛矿太阳能电池中的应用来源:知光谷 发布时间:2025-10-20 09:56:15

所提出的方法无需依赖瞬态技术或传统假设完美载流子提取的IQE模型,即可快速评估器件界面性能。文章亮点:1.新型IQE线性化分析方法:通过强吸收与弱吸收极限下的IQE线性拟合,直接提取界面收集效率fc及其空间梯度,无需依赖瞬态测量或理想化假设。

新型钝化策略使全无机钙钛矿太阳能电池的效率创历史新高来源:钙钛矿材料和器件 发布时间:2025-10-15 10:09:15

洛桑联邦理工学院、西北大学、多伦多大学、考纳斯理工大学和横滨东荫大学的研究人员最近实现了全无机钙钛矿太阳能电池有史以来最高的效率之一。这一过程使钙钛矿表面更能抵抗温度、湿度和其他环境条件,从而延长器件的使用寿命。无机钙钛矿太阳能电池可以通过使用二维/三维钙钛矿异质结构的表面钝化而受益。这一方法提高了无机钙钛矿太阳能电池和组件的效率,同时确保其在高温下的稳定运行。