没有储能的光伏是没有未来的。去年和一位业界朱姓大牛交流,他提出观点“储能技术的发展是光伏产业发展的命脉”,可谓醍醐灌顶。当整个电网只有1%的再生能源占比的时候,没人在乎;可按照现在稳稳超过20%每年的行业发展速度投射未来,光伏达到10%、20%的电网渗透率并不遥远。到时候还这么靠天吃饭阴晴圆缺,前一分钟发电10度后一分钟只发电5度的状况,电网、工商用户、居民,谁受得了?
兔子斗胆预测,如果没有高效低成本的储能配套,光伏发电的占比不会超过10%。
储能的作用在大时间尺度范围(数小时),主要是为了调峰,即实现发电侧和用电侧的匹配。那基本上是什么便宜上什么,铅酸、梯级使用的锂电池、液流电池、蓄水储能等都是可选择的方案,不为本文所重点讨论。而在较小的时间尺度范围之内,储能也具有极其重要的意义。光伏和风能被不客气的称为“垃圾电”,就是因为风光发电功率电压输出靠天吃饭不稳定,而且直流转交流存在波形不理想、频率不协调的问题,给电网造成极大的压力;而储能可以极大程度上解决这些要命的问题。然而储能技术五花八门,到底什么样的储能才是光伏发电所需要的?学界和业界此前并无系统的归纳总结,让人摸不到头脑。
幸而新南威尔士大学博士研究生江屿的 “Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power”《主流电化学储能技术针对光伏发电爬坡速率控制的适用性》大作横空出世,为大家厘清了思路。兔子不敢耽误,在此奉献给大家。
为了减轻压力,电网对光伏电站出力稳定性提出要求,已经成为大趋势。比如德国提出了最高10%每分钟爬坡速率的要求,也即是说每一时刻和一分钟前比较,光伏电站功率输出的差异不能高于10%。许多国家新进推出的并网标准,都要求光伏电站具有必要时断电和减少输出,以及平滑爬坡速率的要求。在多云的天气,50%的爬坡速率也很常见,所以必须要加以处理(见下图)。组件优化器、微型逆变器等电力电子技术都可以在一定程度上实现平滑,但处理的能力非常有限,而且解决问题的方法简单粗暴,要不就是让组件发电偏离最佳功率点,要不就是砍掉多余的出力,为了达到电网稳定性的要求不得已割肉。这个时候,储能系统就是发挥作用的关键了:一旦发电量暴增就充电(而不是直接把多余发电切掉不要了);一旦发电量爆降就放电,实现对电网的持续稳定发力。
化学储能材料和器件的三大重要指标,一是能量密度,关系到充放电的持续性;二是功率密度,关系到瞬间释放能量的能力;三是充放电次数,决定了储能器件的寿命。下图给出了铅酸电池、锂电池、锂离子电容、碳基电化学双层电容器EDLC、电解液电容的能量密度、功率密度和充放电寿命等指标。不幸的是,光伏这样极度苛刻的应用场景,对储能系统能量、功率、寿命的要求都非常高!储能系统储能能力、充放电功率,直接影响了对爬坡速率的控制力。
文章的计算涉及到傅里叶变换等烧脑数学工具,此处不再赘述。总之是通过下面的爬坡速率控制模型流程图,可以实现对瞬息万变的光伏出力(图b蓝色区域)的有效平滑(图b红线为平滑后)。图c显示了储能系统在爬坡上升超过10%每分钟速率的时间段通过充电实现爬坡速率的控制(图c靛蓝色区域),而在光伏出力下降超过10%的时间段,通过放电实现控制(土黄色区域),快速响应的能力是对储能系统充放电功率W的考验。而图d是储能系统的充电状态SoC,SoC的幅值考验的是储能系统总储能能力Wh。