四、数据解决方案的实现与验证
基于上述观察与发现,我们运用机器学习的深度算法,判断出分界点的阈值、计数点的时间区间,以及计算时采用的数据来源,终于得到一个通用的解决方案,并对方案的准确性进行了验证。
首先,我们对得到授权的汇流箱数据进行计算,得到接入的信息,并与站主提供的备案信息进行比较,得到结果如下:
从图中可以看到,计算结果与备案结果相比,有超过90%的相同,在与线下确认之后,发现实际情况与计算结果相同。也就是说,通过对数据的分析与挖掘,我们发现了备案信息与实际情况存在不符。
五、总结
一个清晰准确的电站拓扑结构图是电站数据化的基础,是电站数据应用的基石。我们通过对汇流箱的接入数据进行分析与挖掘,找到了一个线上判断汇流箱接入情况的解决方案,并且对大量的汇流箱进行了可行性验证,可以相信,在经过不懈的努力之后,我们从数据空间里找到了一个解。即通过对汇流箱的数据进行深入的分析与挖掘,可以准确判定该汇流箱的接入路数,进而可以描绘出该电站的拓扑结构图,为后面的数据分析提供坚固的支撑。