富士胶片凭借“可实现环境低负荷及高耐久性的太阳能电池背板” 荣获第14届(2014年)绿色与可持续化学奖 环境大臣奖

来源:索比太阳能光伏网发布时间:2015-07-13 09:09:35
       2015年7月7日,由公益社团法人新化学技术推荐协会主办的“第14届绿色与可持续化学奖”的颁奖仪式上,富士胶片株式会社凭借“可实现环境低负荷及高耐久性的太阳能电池背板”,荣获了 “第14届绿色与可持续化学奖(GSC奖) 环境大臣奖”。
       近年来,应用于太阳能发电系统的背板在应对资源、能源问题和地球环境问题方面的重要性不断提高。富士胶片成功开发出同时满足耐久性提升、材料简洁化、生产流程合理化的产品,与此前相比,在减少环境负荷方面取得了飞跃的进展,受到了一致好评。

       面临日益紧张的能源问题和备受关注的地球环境问题,能够实现降低环境负荷的太阳能发电的重要性不断提升,其需求市场也急速扩大。此外,对于太阳能发电系统本身,也需要增加其耐用年数、减少材料消耗及废弃物产生,以达到更进一步降低对环境负荷的目的。
       在太阳能发电系统中,使用了为防护风雨·紫外线、确保太阳能电池在室外严酷环境中的耐久性的名为“背板”的背面保护膜。然而,以往使用的背板是在PET膜上粘着保护太阳能电池的抗老化膜和组合用粘合膜这一构造。长时间使用可能导致PET膜上会产生开裂。
       富士胶片凭借独创的聚合·制膜技术以及精密涂布技术,开发出了拥有高耐久性强化PET膜的背板,成功提高了太阳能发电系统的耐用年数。另外,不再采用粘着剂组合粘合膜和抗老化膜这种方式,而是在PET膜上直接使用粘合层和抗老化层,采用水涂布工艺,减少了粘着剂等材料的消耗。
       目前搭载了富士胶片背板的太阳能发电系统已取得了第三方认证机构TUV-SUD(*1)的金牌认证(*2)。与其他背板相比,富士胶片成功提升了太阳能发电系统的耐用年数约1.5倍,削减约2/3的材料消耗量和废弃物发生量。此外,在背板生产过程中,由于使用水涂布工艺,没有有机溶剂废液、废气排放的产生,也不需要粘合工序,减少了废弃物以及能源消耗,同时还能降低约1/4二氧化碳等产生温室效应的气体的产生,从整体上成功降低了对环境的负荷。
       富士胶片活用在研发照片胶片中培育的精密涂布技术和聚合、制膜技术,开发并提供高性能、高品质膜,为解决社会问题、维持社会可持续发展做出了贡献。

*1:进行认证、试验、检查的第三方机构
*2:金牌认证指的是检测环境较通常情况下3倍难度的极其严格的环境下进行的耐久性测试。

       新闻背景:
       富士胶片集团:由富士胶片株式会社、富士施乐株式会社、富山化学工业株式会社等三大事业公司组成,全球联结子公司达273家,员工7.8万余名,2014财年销售总额约合226.6亿美元,营业利润约合15.67亿美元,位列世界500强企业。
 
       富士胶片(中国)投资有限公司:
       富士胶片株式会社在华业务统括机构,2001年4月12日成立,总部位于上海,业务领域包括数码相机、影像产品、护肤品、印刷产品、医疗产品、光电产品、产业材料等,注册资金2.134亿美元,下属机构7家。(截至2015年3月)
 
       相关垂询,敬请致电以下部门:
       富士胶片(中国)投资有限公司 电话:021-50106000 邮箱:ffcn.pr-info@fujifilm.com

索比光伏网 https://news.solarbe.com/201507/13/75058.html

责任编辑:xiaoxue
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

复旦大学赵岩&王洋&梁佳Nat Energy:厘米级无富勒烯锡基钙钛矿太阳能电池实现14.51%认证效率来源:知光谷 发布时间:2025-12-09 14:33:49

富勒烯基电子传输层常用于锡基钙钛矿太阳能电池以实现高功率转换效率,但其存在成本高、合成复杂、电子迁移率低以及与钙钛矿相互作用有限等问题。该研究展示了非富勒烯ETL在锡基钙钛矿光伏中的潜力。研究亮点:高效率与大尺寸兼备:采用非富勒烯ETL材料P3,实现了小面积16.06%和大面积14.67%的高效率,且均通过第三方认证,为锡基钙钛矿太阳能电池的大面积化提供了可行路径。

苏州大学袁建宇Nat. Commun.:原位熵配体工程实现高效率量子点太阳能电池来源:知光谷 发布时间:2025-12-09 14:11:57

本文苏州大学袁建宇等人报道了一种高效的原位熵配体工程策略,使用双磷酸酯来提升有机-无机杂化FAPbI量子点的分散性和电荷传输性能。研究亮点:效率突破:认证效率达18.23%通过DEHP熵配体工程,量子点太阳能电池实现18.68%的最高效率,是目前报道的最高效率之一,彰显该策略在提升器件性能方面的强大潜力。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

中国生态环境部副部长李高:到2027年中国碳市场将基本覆盖工业领域主要排放行业来源:碳广角 发布时间:2025-12-09 09:04:20

生态环境部副部长李高中新社北京12月6日电中国生态环境部副部长李高5日在北京表示,按计划,到2027年,全国碳排放权交易市场基本覆盖工业领域的主要排放行业,全国温室气体自愿减排交易市场实现重点领域全覆盖。碳市场是中国利用市场机制积极应对气候变化,加快经济社会发展全面绿色转型的重要政策工具。

钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。