多晶生长
晶胚形成后,开始向上生长。多晶硅的晶体生长于单晶硅的生长有些不同的地方。首先,多晶硅硅的生长是众多的晶柱共同生长,而且相互之间还有竞争和相遇;而单晶则只有一个晶体,不存在晶粒之间的竞争问题;第二,多晶硅的生长是由于温场的作用,底部温度不断下降,导致固液界面不断上升;而单晶的液面温度基本不变;第三,多晶硅铸锭的硅液相对静止,而单晶硅的硅液和晶体是旋转的。这些差异,导致多晶硅生长晶体有利有弊。
晶胚一旦形成,就应当以一定的速度是晶体向上生长。这就需要使坩埚底面的温度慢慢下降,而导致硅液的熔点温度面,在慢慢上升,上升的速度应当与硅晶体的生长速度保持一致。硅晶体的生长速度不是一定的,有一个范围,大约在6~20mm/小时之间。因此,控制固液界面的移动速度,使之保持在这个速度范围内,就可以了。
在常规铸锭时,许多人以为保温体移动的速度就是固液界面的移动速度,这是完全不对的。固液界面的速度与保温体的移动速度有关,但还与底面的温度和加热体的功率有关。有时,固液界面的移动速度大约保温体的移动速度,有时,固液界面的移动速度小于保温体的移动速度。如果底面的温度过低,加热体功率也不大的时候,保温体稍微上升,可能会导致整个底部向上的一段区域内温度比较快地下降,这时,固液界面移动的速度就比保温体可能要快,从而导致长晶很快。
更多的时候,如果保温体是慢慢提升的,而加热体的功率也比较大时,当保温体提升到了一定的高度,由于保温体以下的部分依然有辐射从而保持较高的温度,这时,固液界面的移动速度就比保温体的移动速度慢得多。总之,坩埚底部温度也需要不断地变化,而硅液顶部的温度,也是需要不断地变化的。更为复杂的是,这两个参数随时间的变化都不是线性的。
考虑到液体硅内部由于存在对流的作用,温差较小,而固体硅内部由于硅无法移动,热量只能通过热传导的方式,而硅的导热系数较低,导热性差,因此,固体硅的内部可以形成较大的温度差。这样的话,在晶胚一旦形成,可以让底部先以较快的温度梯度下降,而同时,顶部可以保持一个相对较高的温度,这样有利于底部的柱状晶生长。
当柱状晶长到80-120mm高时,由于固体的导热性较差,因此,顶部温度要以一个线性匀速下降,这可以有利于固液界面的匀速上移。
当柱状晶长到160-220mm高时,由于大部分已经是固体,因此,底部温度对固液界面的温度影响已经不大,但由于固液界面在结晶时的潜热,因此,产生的热量还是需要不断地从底部被带走,因此,底部温度必须足够的低,以便在固体硅内部形成足够大的温度梯度,把固液界面的温度带走。这时,促使固液界面上升的主要动力就是顶部温度的下降,和底部温度的下降。当顶面的温度逐渐趋于硅的凝点时,晶体生长就接近表面,近于结晶完成阶段。
通常,铸锭要想成功,要同时保证两个基本条件,一个是温度梯度始终是下低上高,而且固液界面以我们希望的长晶速度向上移动;其次,要保证固液界面尽量水平。如果固液界面不水平,就必然导致中部长得快,或者旁边长得快。这样,不仅不利于定向凝固去杂,而且,晶体在中部交叉,可能导致多晶硅锭内部的应力增大,使得硅锭容易破裂。