5
控制思想是:输出电感电流io经采样反馈后,与经同步处理后的、与电网电压同频同相的正弦波参考电流iref作比较,误差信号经过PI调节后,再经SPWM发生器产生相应的驱动信号,送入主电路驱动开关管。
在逆变器并网启动瞬间,若未能快速建立电流环的有效跟踪,会造成电流跟踪相位差过大,可能超过90°,则系统会倒灌电流,吸收电网电能。若短时间内不能控制电流跟踪相差,则会造成系统过压保护动作。因此,系统对并网电流的控制不仅要注意其稳态性能指标,还要关注其动态指标。
由图3b可见,电网电压相当于外部扰动,该扰动在控制环节中的影响不容忽视。所以,需要在扰动作用点之前的前向通道中增加一个前馈控制量进行抑制,这样便可有效改善系统的动态性能。
6
令G3(s)=1/KPWM,则有Io=0。可见,通过电网电压的前馈控制,可从理论上达到对电网电压扰动的全补偿要求。
2.3、独立/并网模式切换
由上述分析可知,独立、并网两种工作模式分别有其各自的控制方法,而不同的控制方法又需通过不同的电路来实现。所以,逆变系统工作模式的切换在硬件上就表现为对控制电路的切换。此处采用芯片UTC4053来完成这一要求。
根据UTC4053的特性,设计出模式选择部分电路如图5所示。
MOD_SEL为模式选择信号,由单片机控制,REF_SIN为参考正弦信号,由单片机给定,EA_OUT为误差信号,Io_SENSE为输出电流反馈信号,Uo_SENSE为输出电压反馈信号。R7~R10,C4,C5和运放U1构成逆变系统并网工作时的反馈控制电路,R11~R15,C7,C8和运放 U2构成逆变系统独立工作时的反馈控制电路。
该部分电路工作原理为:①当MOD_SEL=1时,VQ1导通,A=B=0,C=0,则通道ax,bx打开。REF_SIN由a端输入,ax端输出,与电压反馈信号VC_SENSE作比较。经图中所示运放电路调理后的信号从bx端输入,b端输出,该信号为EA_OUT。此时为独立运行模式;②当 MOD_SEL=0时,VQ1关断,A=B=1,C=0,则通道ay,by打开。REF_SIN由a端输入,ay端输出,与电流反馈信号IL_SENSE 作比较。经图中所示运放电路调理后的信号从by端输入,b端输出,该信号为EA_OUT。此时为并网运行模式。
设计实例与实验结果
此处设计了一个1 kW的光伏逆变系统。采用图1所示拓扑,主要参数为:输入电压35~75 V,输出电压220 V,输出电压频率50 Hz,直流母线电压400V,输出功率1 kW,变压器初次级匝数比8:96,隔直电容88μF,滤波电感分别为3.3 mH和1.2 mH,滤波电容分别为600 μF和2.2μF。
系统采用AVR单片机ATMEGA64作为主控芯片。DC/DC部分VT1~VT4采用IXFK180N10型MOSFET管,VD1~VD4采用 MUR8120型快恢复二极管,开关频率f=62.5 kHz,高频变压器磁芯采用PQ50/50,使用丝包线绕制。DC/AC部分VT5~VT8采用47N60C3型MOSFET管,f=32 kHz。 8
为验证工作原理,用示波器进行检测。图6a为输出滤波前高频调制电压波形。可见,电压幅值约350 V,频率50 Hz。图6b为独立逆变模式下,逆变器带电阻性负载工作波形。可见,逆变器可输出理想的220 V/50 Hz正弦电压,在带负载时,仍能保持良好正弦性。经实测,满负载输出时电压THD≤3%,满足要求。图6c为并网逆变模式下,逆变器工作波形。可见,逆变器输出4.5 A/50 Hz正弦电流,且电流相位稍微滞后于电网电压,因为MCU的数据处理耗费了一定时间。忽略这一点,输出电流与电网电压基本同频同相。经实测,额定功率输出时电流THD≤5%,满足要求。
结论
此处针对光伏逆变系统,提出一种独立/并网双工模式逆变系统,分析了逆变器拓扑结构及控制原理,采用前馈控制进行改进,提出一种用于切换两种工作模式的方法,并研制一台实验样机验证可行性。结果表明该方案研制的逆变系统工作稳定,运行可靠,可分别工作于独立、并网两种模式,且能自由切换。系统具有良好的应用前景。