EVA老化机理以及对太阳电池的影响

来源:发布时间:2011-12-20 23:59:59
索比光伏网讯:摘要:总结了EVA(乙烯和醋酸乙烯酯的共聚物)的老化机理以及老化现象,讨论了影响EVA性能的各种因素,详细论述了各种老化现象对太阳电池组件性能的影响。
   EVA(乙烯和醋酸乙烯酯的共聚物)是目前太阳电池封装工艺中最常用材料,主要是通过在EVA基料中添加紫外吸收剂、紫外稳定剂、抗氧化剂和交联剂等各种不同的添加剂制作而成的。根据添加的交联剂的不同,EVA又分为常规型和快速固化型(又称快固型)两种,主要差别在于固化时所需要的时间不一样。EVA在固化过程中会发生交联反应,形成一种三维网状结构,对太阳电池起到很好的密封作用,但是在太阳电池组件的使用过程中,这种结构会在紫外线、高温、湿气和氧气的作用下缓慢的发生变化,EVA性能不断下降,从而导致太阳电池组件的性能降低。
  一、EVA主要的老化机理
  太阳电池组件在户外使用时,在组件内部存在极少量的O2,由于光和热的联合作用EVA内部发生的化学反应主要是Norrish Type II(又称脱乙酰反应,产生乙酸和烯烃)或者Norrish Type I(生成乙醛和CO,CO2,CH4等一些气体),如图1a所示。温度越高、紫外辐照的强度越大、紫外光的波长越短,反应的速度就会越快,并且随着乙酸浓度的增加,反应的速度还会加快。其中的脱乙酰作用也可以在紫外线、热单独作用下和光热联合作用下发生。但是光热联合作用可以大大增加反应速度。多次脱乙酰可以生成长链的共轭烯烃。
   
   在太阳电池组件的边缘部分,EVA会和大气中的氧气接触,这时会发生氧化反应使多烯烃的共轭体系变短。氧化反应在高温和低温时都可以发生,但是光照和高温会加快反应的进行。
   二、EVA老化现象及对太阳电池组件的影响
  1、EVA变色
  有机物中颜色主要是由生色团产生的。EVA中的生色团就是共轭烯烃,共轭烯烃的共轭碳链越长,EVA的颜色就会越深。结合上面的老化机理可以看出,EVA材料的变色的直接原因就是光热老化下的化学反应产生了多烯烃生色团,随着生色团的共轭体系的延长,EVA的颜色还会加深,从浅黄(轻微)变到深褐色(严重)。另外,还有其他一些机制会加速EVA的变色,例如随着EVA老化产生的乙酸会促进EVA的变色,EVA配方中的各种添加剂相互作用也会加速变色。
   影响EVA变色的因素是多种多样的,主要可以分成物理和化学两个方面。
   化学方面的因素有:(1)EVA的配方:改变各添加剂的配比,或者使用更为稳定的替代品,使EVA内各添加剂之间的相互作用减小或得到抑制,可以降低EVA变色的速度。(2)氧气扩散到层压好的组件中而引起的氧化反应破坏了生色团,可以对EVA起到“漂白”的作用,从而影响到EVA的变色。
   物理方面的因素有:(1)紫外光的强度:紫外光的强度越大,波长越短,越容易导致EVA的变色。所以当使用V形槽等聚光设施时可以加速EVA的变色,而使用能够吸收紫外线的盖板玻璃能够延缓EVA的变色。(2)聚合物背板材料的气体透过性:背板材料透气性的高低可以影响EVA与氧气的接触,从而影响EVA的变色。(3)太阳电池组件的层压条件:层压条件决定了EVA的交联度,这直接关系到组件的性能。另外层压时的高温环境会导致一系列复杂的反应,对EVA产生不利的影响。
   EVA变色会降低光学透过率,从而降低组件的输出功率。据报道,由此造成的短路电流和转换效率的降低值分别超过13%和19%。如果变色不均匀,还会导致太阳电池之间、组件之间的不匹配,这种情况比均匀变色引起的影响要坏很多,据相关文献报道,这种原因造成的损失可以达到11.1%。另外详细考察组件光学透过率的变化,会发现它不只是简单的一味的降低,而是先升高,然后再降低。这是因为在组件使用的初期,紫外吸收剂会不断地消耗导致紫外部分的透过率增加,这个效应大于轻微变色导致的透过率的下降,所以总的透过率是上升的,当紫外吸收剂消耗完以后,由变色引起的透过率变化才占据主要地位,导致组件总的透过率随着EVA变色程度的加深而不断地下降。另外这个过程中光学方面的变化不只是透过率的变化,还有光谱的变化,而太阳电池对不同波段的光的响应是不一样的,所以组件的电性能受到的影响与光学性能受到的影响并不一致,但是总体上,也还是先升高再降低。

  2、EVA的氧化褪色
  氧化褪色主要是在氧气的参与下,EVA发生了氧化反应,致使多烯烃的部分双键发生断裂,破坏了生色团的结构,使老化的EVA不显示出颜色。另外变色后的EVA也会因为氧化反应重新变得透明。因为氧化反应的存在,上世纪90年代就有人试验用透气性好的材料作为电池组件的正面材料,来防止EVA的变色,直到现在还有这方面的研究,主要是制作“能呼吸”的背板材料。这种材料虽然在减轻EVA变色方面有一定的作用,但是氧气的存在会使聚合物的分子链上形成过氧基团或含氧基团,从而引起分子链的断裂或交联,导致聚合物力学性能损失,包括韧性、冲击强度、弯曲强度等,也可导致聚合物外观发生显著变化,如粉化、产生裂纹、失去光泽、变黄等。
   3、脱层
  脱层指的是EVA与盖面材料、背板材料或者太阳电池之间失去粘合性,相互分离。发生脱层的原因可能有:(1)EVA在长期的日光照射和自然条件(空气,湿气)等的作用下粘合力慢慢地降低;(2)太阳电池组件制作过程中EVA与太阳电池就没有很好粘合,原始的粘合力就比较低;(3)层压工艺控制不好,使EVA的交联度没有控制在一个比较合理的范围内(一般认为是75%-85%),EVA的弹性受到影响。这样,在使用过程中,太阳电池组件就会因长期的昼夜交替造成的高低温循环而产生脱层。
   脱层不但会影响组件的外观,而且脱层处形成的界面还会增加光学的损失,从而影响组件的效率。另外脱层发生在组件的边缘时,空气会顺着脱层处的界面进人到内部,使EVA被氧化。
   4、产生乙酸,腐蚀电极
  EVA老化产生的乙酸会腐蚀太阳电池的背板、电极和焊带等金属部分,严重的腐蚀一是可以造成断路,直接导致组件的失效,二是在系统电压比较高时,某处的断路点还会发生打火的现象,频繁的打火会使局域温度上升到很高,甚至引起玻璃的熔化,如果紧挨着易燃物还有可能引起火灾,这就非常严重了。
   为了解决这个问题,人们进行了很多研究,其中最重要的一项就是上面提到的“能呼吸”的背板材料。这种材料能使EVA老化产生的乙酸扩散到空气中,从而减轻了对太阳电池组件内部金属部分的腐蚀。
   三、总结
  EVA老化的最根本因素是自身的化学结构不够稳定,在紫外线、温度、湿度氧气和昼夜交替的高低温循环下发生化学反应,性能不断地衰退。EVA老化的主要现象有变色、氧化褪色、脱层以及产生乙酸等,这些老化现象的存在,会使太阳电池组件的电性能不断下降,影响太阳电池组件的外观,缩短组件的寿命。要解决这个问题,最主要的就是要改进EVA的配方,使EVA的性能更加稳定;其次就是能够提高其他材料的性能,如“能呼吸”的背板材料,以此来延缓EVA的老化及其对太阳电池组件的影响;最后就是优化太阳电池组件的制作工艺,使EVA的性能能够达到最优化,这样才能进一步延长太阳电池组件的使用寿命。

索比光伏网 https://news.solarbe.com/201112/21/262380.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
【光伏快报】58亿抢筹光伏;国家能源集团光伏项目招标终止来源:索比光伏网整理 发布时间:2025-07-11 09:22:21

6月27日至今,中证光伏产业指数(CSI:931151)在10个交易日内大涨11.90%,大幅跑赢A股市场。期间,上证指数、深证成指、创业板指累计涨幅分别为1.78%、2.78%、3.55%。与此同时,Choice数据显示,光伏设备板块近十日主力资金净流入57.7亿元,不仅高居A股第一,而且是位居次席的保险板块的3.2倍。

CPIA:我国钙钛矿太阳能电池发展情况来源:钙钛矿材料和器件 发布时间:2025-07-10 15:20:25

近日,中国光伏行业协会分享了年度报告中第七篇,我国钙钛矿太阳能电池发展情况我国钙钛矿太阳能电池发展情况

香港理工大学李刚AM:20.1%! 揭示能量损失机制制备高效三元有机太阳能电池!来源:钙钛矿人 发布时间:2025-07-10 11:25:12

在有机太阳能电池中,三元策略是获得高效有机太阳能电池的主流途径,深入理解提高开路电压(VOC)的工作机理和材料选择标准是实现有机太阳能电池进一步突破的关键。

北京理工大学李红博 AM:32.0%!纳米晶核模板策略用于具有增强均匀性和能级对准的高效钙钛矿/硅叠层太阳能电池!来源:钙钛矿人 发布时间:2025-07-09 15:43:11

文章介绍宽带隙 (WBG) 钙钛矿太阳能电池 (PSC) 对于提高串联太阳能电池的效率至关重要,但存在严重的光电压不足和卤化物偏析,大大降低了其性能和稳定性。基于此,北京理工大学李红博等人开发了一种纳米晶-核模板 (N

总投资5亿!湖北首个柔性钙钛矿光伏项目落户襄阳来源:柔性钙钛矿光伏前沿 发布时间:2025-07-07 16:55:03

据极目新闻报道,钙钛矿太阳电池薄膜贴在高楼大厦的玻璃上,使整栋大楼的照明用电便无需担忧;在手机外壳、电动汽车顶棚贴上这样的薄膜,手机断电或汽车无法启动的烦恼也将成为过去。近日,在襄阳市科协的“牵线搭桥”下,钙钛矿太阳电池薄膜技术科技成果转化项目成功落户襄阳,成为该市科技招商领域的又一重大突破。

华科/海南大学李雄 NC:26.46%!交联多功能双层聚合物缓冲层用于提高钙钛矿太阳能电池的效率和稳定性!来源:钙钛矿人 发布时间:2025-07-07 10:46:34

华中科技大学/海南大学李雄等人设计了一种由聚乙烯亚胺 (PEI) 和 2-((2-甲基-3-(2-(2-甲基丁酰基)氧基)乙氧基)-3-氧代丙基)硫代)-3-(甲硫基)琥珀酸 (PDMEA) 组成的双层多功能聚合物缓冲液,插入金属电极/传输层的界面。该缓冲液通过在金属层和 PDMEA 之间形成硫醚-金属-羧基螯合环来减轻金属原子扩散。此外,它通过基于 Lewis 酸碱反应的 PDMEA 羧基和 PEI 胺基之间的原位交联来促进高效的电子传输并抑制界面复合。因此,这种设计有效地减少了器件制造和作过程中不需要

光伏辐射真相:非电离辐射下的安全能源革命来源:索比光伏网 发布时间:2025-07-02 11:26:24

在"双碳"目标推动下,中国光伏新增装机量连续十年领跑全球,2024年累计装机突破600GW,相当于每年减少二氧化碳排放超6亿吨。然而,随着光伏板如银色浪潮般覆盖城乡屋顶,公众对"光伏辐射"的担忧也与日俱增。这种担忧背后,既有对新能源技术的陌生感,也混杂着对电磁辐射的普遍焦虑。本文将从科学原理、国际标准、实际案例三个维度,揭开光伏辐射的真相。

异质伴同行 鑫动760|中国光伏太阳能高效760W+俱乐部第十三次圆桌会议圆满落幕来源:浙江润海新能源有限公司 发布时间:2025-07-02 09:20:10

6月26日,中国光伏太阳能高效异质结760W+俱乐部第十三次圆桌会议在江苏江阴圆满召开。本次会议由轮值主席单位中建材浚鑫科技有限公司牵头主办。安徽华晟新能源、广东明阳光伏、广东泉为科技、国电投新能源、国晟世安科技、金刚光伏、江苏光势能、琏升光伏科技、上海恒羲光伏、中建材浚鑫、浙江润海新能源、珠海鸿钧新能源(以上按中文首字母排序)等十二家俱乐部成员单位共聚一堂,并特邀中国国检测试控股集团股份有限公司、长沙壹纳光电材料有限公司、SOLARZOOM光储亿家共襄盛举。

光伏的辐射对人体有害吗?来源:索比光伏网 发布时间:2025-07-01 14:28:33

在当今追求绿色能源的时代,光伏发电作为一种清洁、可再生的能源形式,正逐渐走进我们的生活。无论是在广袤的沙漠中矗立的大型光伏电站,还是居民屋顶上铺设的一片片光伏板,都在将太阳能转化为电能,为我们的生活提供着源源不断的动力。然而,随着光伏的日益普及,一个问题也时常萦绕在人们心头:光伏是否有辐射?它对人体是否有害?今天,就让我们一同深入探讨,揭开其中的真相。

前沿光伏技术之激子倍增——让光生载流子倍增的太阳炼金术(一)来源:爱旭研发中心 发布时间:2025-07-01 09:35:32

光伏技术作为可再生能源的核心方向,其能量转换效率始终是研究重点。在早期科学家的认知中,一个光子通常只能激发单个电子-空穴对(激子),对应单结硅基太阳电池的理论效率上限为33%[1]。然而,激子倍增(multiple exciton generation,MEG)现象[2,3]的发现打破了这一瓶颈——特定无机物量子点(如硫化铅)或有机半导体材料(如并五苯)中,单个高能光子可产生多个激子,实现载流子倍增效应,理论上可将光伏效率提升至44%以上[4]。下面将介绍载流子倍增技术的核心原理——激子分裂。

极电光能于振瑞:钙钛矿光伏产业化提速,“效率到应用”仍面大考来源:钙钛矿光链 发布时间:2025-06-30 13:43:31

近期,极电光能联合创始人、总裁于振瑞在接受新华财经专访时表示,我国钙钛矿光伏技术在世界舞台上表现亮眼,不断刷新转化效率世界纪录。然而,产业化之路并非坦途,欧美等国企业正在钙钛矿电池技术等方向加速布局,竞争态势愈发激烈。我国要想稳固在全球钙钛矿领域的领先地位,政策支持与产业链协同不可或缺。