全无机锡铅卤化物钙钛矿因其接近理想的带隙和优异的光电特性,成为下一代光伏器件中极具潜力的吸收层材料。该添加剂可同时钝化深层缺陷、抑制锡离子氧化、减少碘离子迁移并提升耐湿性,从而显著增强环境稳定性。经处理的钙钛矿薄膜在空气中保持稳定的钙钛矿相,并展现出更优的光电性能。基于该薄膜制备的器件实现了14.2%的功率转换效率,未处理对照组为8.9%,并在惰性气氛下储存3000小时后仍保持94%以上的初始性能。
为应对这一挑战,西北工业大学李祯等人开发了一种利用氟化聚酰胺酸进行原位晶界封装的策略。PIF聚合物在晶界处发生原位聚合,形成贯穿钙钛矿的三维聚合物网络,有效阻隔气体释放通道。引入PIF后,钙钛矿质量得到提升,基于PIF的刚性与柔性钙钛矿太阳能电池分别实现了25.28%和24.42%的光电转换效率。通过进一步引入ITO顶电极和外部封装,器件在1140小时内仅以0.009%/h的极低速率衰减。
柔性钙钛矿/铜铟镓硒叠层电池为实现高效、轻量化光伏提供了可行路径,但如何同时实现高效率和机械耐久性仍是一大挑战。该分子重构有效抑制了分子间π-π堆积,实现了均匀的选择性接触层和高质量的钙钛矿薄膜。柔性叠层效率创纪录:0.091cm柔性钙钛矿/CIGS叠层电池认证效率达25.5%,厘米级器件认证效率达24.3%,均为当前柔性两端叠层最高水平之一。
苯基铵已广泛用于缺陷钝化,通过在3D钙钛矿顶部形成准2D钙钛矿层来增强钙钛矿太阳能电池的光伏性能。该反应加速了钙钛矿的降解,从而降低了光伏性能和长期稳定性。在这里,N、N-二甲基苯磺酰胺是一种通过简单工艺合成的非离子二元化合物,被用作缺陷钝化材料。此外,DMBSA钝化有效地抑制了非辐射复合,而其偶极矩感应出电场,促进了空穴向空穴传输层的高效转移。
将对称取代基掺入自组装单层中是抑制聚集的有效策略。然而,由此产生的对称空间效应通常会削弱π相互作用。为了更好地平衡空间效应和π相互作用,天津大学张飞等人通过sp3杂化9、10-dihydroacridine核心、4PADMeAC和4PADPhAC设计了两个具有不对称空间效应的SAM。与甲基相比,苯基产生更大的扭曲角和更有效的ππ相互作用,从而产生更小的胶束和更有效的空穴传输。
本文东南大学姚惠峰等人通过在苯并二噻吩单元上引入长共轭侧链——氯化烯丙硫基-噻吩-乙烯-噻吩,设计了一种二维共轭聚合物给体PBDB-tvt。最终,最优器件实现了20.3%的最高PCE。多功能中间层协同增效:PBDB-tvt中间层不仅优化了垂直相分布,还增强了短波长光吸收,提升电荷传输与提取效率,抑制复合。
中国科学院大连化学物理研究所李灿院士、刘劼玮副研究员等提出“溶剂-添加剂级联调控”(SACR)策略,通过协同调节溶剂诱导的中间相形成与添加剂主导的晶面生长动力学,实现了钙钛矿薄膜的单一取向可控生长,并揭示了晶面取向对器件性能与稳定性的决定性作用。近日,相关成果发表于《能源与环境科学》。
交联后的SAM在极性溶剂暴露下仍能保持结构完整性,减少了界面缺陷的形成,同时增强了载流子传输性能并改善了钙钛矿薄膜的结晶性。卓越的耐溶剂性与界面完整性:交联后的SAM在强极性溶剂处理后仍能保持高覆盖度和结构完整性,有效抑制了钙钛矿沉积过程中界面缺陷的产生,并诱导形成更大晶粒、更高质量的钙钛矿薄膜。
钙钛矿太阳能电池展现出令人瞩目的光电转换效率,但其稳定性仍不足以满足工业化商业需求,主要归因于钙钛矿材料中固有的缺陷和卤素离子迁移。将该大环分子通过反溶剂注入法引入钙钛矿薄膜中,可调控钙钛矿结晶过程并抑制卤素阴离子迁移。最终,基于NBP的PSCs实现了25.38%的PCE,并在室温N气氛下1太阳光照射下进行1000小时最大功率点跟踪后仍保持95.8%的初始效率。
卤化物钙钛矿优异的光电性能使其适用于光电器件及新兴量子发射应用。近年来,钙钛矿纳米材料的进展使得发光衰减时间可低于100皮秒,激发了人们对更快速辐射过程的探索,而这此前仅能在昂贵的III-V族外延材料中实现。通过结合超快光谱、光学与电子显微镜的多模态策略,我们揭示了这些瞬态源自纳米畴超晶格中的量子隧穿效应。发射与结构的局域关联分析表明,该纳米畴超晶格由交替排列的角共享与面共享八面体有序层构成。



