考虑到移动或可穿戴系统对低压设备操作和超低功耗的严格要求,小截止状态漏电流和小亚阈值摆动至关重要。在玻璃基板上制造的n沟道ActivInkN1100TFT的传输和输出特性除p沟道TFT外,还使用PolyeraActivInkN1100作为半导体制造n沟道有机TFT。结论展望本文报道的纳米级TFT和反相器是使用电子束光刻技术制造的。虽然电子束光刻的主要缺点是其低吞吐量,但这并不排除使用电子束光刻在更大规模上制造有机TFT和电路的潜力。
芬兰坦佩雷大学的研究人员启动了一个新项目NEBULAE,该项目由地平线欧洲玛丽·斯克沃多夫斯卡-居里行动博士后奖学金计划资助。NEBULAE的核心是无铅钙钛矿纳米晶体的创新应用。NEBULAE旨在通过将掺镱钙钛矿纳米晶体嵌入玻璃材料中来改变这一现状。因此,NEBULAE代表着朝着不仅实现清洁能源转型而且对环境负责的材料迈出了一步。NEBULAE的正式名称为“嵌入太阳能电池玻璃中的环保掺镱钙钛矿纳米晶体”,已获得欧盟委员会近200,000欧元的资助。
了一种纳米晶-核模板 (NCNT) 策略,通过精确匹配纳米晶体的 I/Br 比与目标钙钛矿薄膜的 I/Br 比,直接解决异质成核——相分离的根本原因。这种方法指导 Pb-I/Br 八面体的均质组装
方式在NiOx表面构建CoPc中间层:CoPcevap:通过热蒸发方法制备的薄膜;CoPcnws:通过温度梯度物理气相沉积(TG-PVD)方法形成的纳米线结构。通过比较三种HTLs(纯NiOx、NiOx
/CoPcevap、NiOx/CoPcnws)对电池性能的影响,研究者系统评估了双层结构对电荷传输、界面稳定性和器件整体性能的作用机制。关键实验与结果表面形貌与晶体结构:CoPc薄膜平整致密,可有
2g,h)引发了该结构可扩展性的担忧。为解决这一问题,研究者提出了多种创新互连层方案以提高稳定性。其中SnO₂/纳米晶ITO/自组装单分子层(SAMs)结构兼具高透光性和优异导电性,其采用低温溶液法制
备的ITO纳米晶(NC-ITO)层能减少对底层子电池的损伤,并展现出550小时T95稳定性的优异表现(图2i)。另一种常用结构SnO₂/溅射TCO/PEDOT则通过溅射ITO或氧化铟锌等透明导电氧化物
有良好的发光性能和热稳定性,使其在白光照明和植物生长照明领域具有广阔的应用前景。图1.
展示了Cs2NaLuCl6的晶体结构a),掺杂剂与宿主阳离子之间的有效结合能差(ἧ)以及Eform分析b
%Sb3+三掺杂磷光体的光致发光光谱。图4显示了三掺杂样品在455和611纳米发射波长下的光致发光寿命及其光致发光能量分布(PLE)光谱。图5展示了Cs2NaLuCl6:
5%Ag+、5%Bi3+
金属卤化物钙钛矿是用于发光二极管(LED)的很有前景的材料。利用纳米晶体/量子点、低维钙钛矿和超薄钙钛矿层对电荷载流子进行空间限制,都被用于提高钙钛矿发光二极管(PeLED)的外量子效率。然而
域、大晶粒全无机钙钛矿晶体的替代策略。使用牺牲添加剂次磷酸和氯化铵来诱导溴化铯铅的成核和结晶,从而得到具有最小陷阱密度和高光致发光量子产率的单晶颗粒。得益于高载流子迁移率和抑制的俄歇复合,我们获得了
范德华异质结构a,二维范德华异质结构的示意图(左),由金属性石墨烯、半导体型MoS₂和绝缘性HfO₂组成;以及相邻二维纳米片之间通过与聚乙烯吡咯烷酮(PVP)表面活性剂发生C–H插入反应实现光交联过程的
示意图(右)。b,完全由光图案化二维材料构成的场效应晶体管(FET)阵列和逻辑门器件的实物照片,制备于一片2英寸硅晶圆上。c,通过直接光图案化工艺制备的二维范德华图案的光学显微镜图像。图案化工艺的
人物简介Stefaan De
Wolf于2005年在比利时天主教鲁汶大学获得博士学位,在此期间,他还加入了比利时IMEC,从事晶体硅太阳能电池的研究。2005年至2008年,他在日本筑波国家先进
场地进行比较,以展示在具有实际相关反射率的地点,串联双面性的附加价值。(2022年Science)在钙钛矿/C60界面处,具有约1纳米厚度的MgFx中间层通过热蒸发有利地调整了钙钛矿层的表面能,从而促使高效
) 光强-开路电压依赖关系g) PEAI与NAMI钝化器件在85℃氮气环境中、100 mW/cm²光照条件下的最大功率点(MPP)持续跟踪测试结果器件制备(NAM)₂PbI₄晶体生长方法将22.3 mg
至-10℃环境,数小时内即可析出橙色晶体。钙钛矿薄膜制备配制1.5M的Cs₀.₀₅FA₀.₉₅PbI₃前驱体溶液:按化学计量比将CsI、FAI和PbI₂溶于DMF:DMSO(4:1 v/v)混合溶剂。体相