该研究提出通过共组装分子杂化策略优化倒置钙钛矿太阳能电池的掩埋界面:将多羧酸功能化芳香化合物4,4’,4’’-三苯甲酸腈与常用自组装分子膦酸Me-4PACz形成NA-Me杂化层,有效改善Me-4PACz的润湿性差、团聚问题,减少界面纳米空洞与残余拉伸应力,降低非辐射复合损失;基于该策略的小面积倒置PSCs获得26.54%的认证稳态效率,11.1cm面积的迷你组件认证效率达22.74%,且在环境空气中1-sun光照下运行2400小时后仍保持初始效率的96.1%,为倒置PSCs商业化提供关键技术路径。
将对称取代基掺入自组装单层中是抑制聚集的有效策略。鉴于此,2025年10月29日天津大学张飞在期刊《ACSEnergyLETTERS》发文“sp3HybridizedSelf-AssembledMonolayerswithAsymmetricStericEffectforPerovskiteSolarCells”。为了更好地平衡空间效应和π相互作用,本文通过sp3杂化9、10-dihydroacridine核心、4PADMeAC和4PADPhAC设计了两个具有不对称空间效应的SAM。因此,4PADPhAC薄膜表现出更高的均匀性和更高的电导率,从而产生具有更高结晶质量和更低捕集密度的钙钛矿薄膜。
将对称取代基掺入自组装单层中是抑制聚集的有效策略。然而,由此产生的对称空间效应通常会削弱π相互作用。为了更好地平衡空间效应和π相互作用,天津大学张飞等人通过sp3杂化9、10-dihydroacridine核心、4PADMeAC和4PADPhAC设计了两个具有不对称空间效应的SAM。与甲基相比,苯基产生更大的扭曲角和更有效的ππ相互作用,从而产生更小的胶束和更有效的空穴传输。
自组装分子作为空穴选择层在钙钛矿太阳能电池中取得了巨大成功。然而,有效调控杂化自组装分子在氧化铟锡衬底上的吸附构型仍具挑战,这直接影响其取向与均匀性。增强埋底界面质量与电荷传输:BSCA共组装诱导的垂直排列促进更致密、均匀的SAM覆盖,提升钙钛矿结晶质量,加快电荷提取并有效抑制非辐射复合。
杂化有机-无机钙钛矿因其晶体特性备受关注,而最新研究发现它们还能形成液态和玻璃态,为非晶态材料研究提供了新平台。本研究英国利物浦大学LaurenN.McHugh、剑桥大学SinE.Dutton和ThomasD.Bennett等人详细探究了二维HOIP材料PbBr的熔融与玻璃化过程的结构动态。与晶体相比,其玻璃态展现出更优异的机械性能,包括更高的杨氏模量和硬度。这些发现深化了对HOIP玻璃结构演化与性能关系的理解,为其在先进相变材料技术中的应用奠定了基础。
华科/海南大学李雄等人提出了一种利用共蒸发铯碘化铅封层的稳定策略。FAPbI3/CsPbI3双层结构器件的逆向扫描功率转换效率达到了27.17%,并保持了26.62%的稳定功率输出效率。该论文近期以“Mutualstabilizationofhybridandinorganicperovskitesforphotovoltaics”为题发表在顶级期刊eScience上。钙钛矿相变和相互稳定性示意图。图4.器件性能和稳定性分析。基于10个器件的具有不同钙钛矿膜的PSC的PCE的统计。构建了高稳定性的FAPbI3/CsPbI3钙钛矿异质结构,并与钝化剂F-PEAI结合,制备了效率为27.35%的PSCs和效率为25.14%的1cm2器件。
Perovski名字命名的一类具有ABX3结构的矿物化合物(如CaTiO3),而具有光伏效应的钙钛矿材料主要是一类具有相同晶体结构的杂化金属卤化物钙钛矿。钙钛矿太阳电池(Perovskite Solar
%,导致回收硅料只能用于低等级产品;薄膜电池(如碲化镉)的分层结构复杂,金属与半导体层的分离成本高昂。此外,钙钛矿等新型太阳能电池商业化加速,其有机 - 无机杂化材料的稳定性问题尚未解决,一旦
。3. 电荷传输层(HTL/ETL):需要与柔性基底良好附着的均匀薄膜引入界面层和添加剂显著提高了性能4. 钙钛矿层:分为全无机和杂化两类添加剂工程是提高机械稳定性的关键策略5. 顶电极:蒸镀金
传输层(HTL/ETL)的优化和钙钛矿添加剂的使用,这些添加剂能够填充晶界,改善界面接触,从而提高器件性能。核心优势:轻量化与灵活性柔性钙钛矿太阳能技术最显著的优势是其出色的功率重量比,这使其在建筑一体化
分子诱导”策略,创新性地将金属卤化物钙钛矿材料的光吸收(的边界)从本征630 nm显著拓展至2000 nm的红外光区,且具备高吸光度。作者揭示并提出其背后的物理新机制为图灵结构钙钛矿的杂化物质