文章介绍无添加剂有机太阳能电池 (OSC)
通过消除与溶剂添加剂相关的加工复杂性,代表了向可扩展、稳定的光伏器件迈进的关键进步。然而,在没有活性层的情况下实现最佳的活性层形态仍然是一项艰巨的挑战
8-BO、PY-DT和L 8-BO:PY-DT膜的t1、t2和t3时间的直方图。(e)L 8-BO、PY-DT和L 8-BO的晶体相干长度(CCL)和p-p
d-间距:(f)L 8-BO、PY-DT和
&Bo He研究背景钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已突破26.5%,逐步逼近最先进的晶体硅太阳能电池水平。在反式钙钛矿电池性能提升过程中,有机空穴选择性自组装分子(SAMs)发挥
了关键作用。要实现钙钛矿光伏技术的进一步发展,SAMs需兼具增强的空穴传输性能、优异稳定性及大面积溶液加工性,但同步满足这些特性的分子设计仍存在重大挑战。导电性与均匀性不可兼得?1、提高导电性与稳定性
的相互作用,为材料设计提供基础支撑;化学学科人才致力于合成性能优异的钙钛矿材料,调控其晶体结构与缺陷特性;材料学科专家则专注于材料的加工成型与性能优化,确保其在器件中的适用性;光电学科成员负责构建高效
致力于材料设计、合成、界面工程以及器件结构优化等核心问题的研究,持续在材料晶体结构的调控、界面缺陷的修复以及器件结构的创新方面进行深入探索。他们深知,科研的道路上没有捷径,唯有脚踏实地、持之以恒,才能
%,最高为27%了)电池。更值得注意的是,全钙钛矿叠层微型组件效率已达24.8%,超越单结钙钛矿组件23.2%的纪录。除卓越效率外,全钙钛矿叠层电池还具有原料丰富、生产能耗低、可溶液/气相加工等优势,有望
-9-基)乙基)膦酸)。扩大生产规模中的挑战与创新组件效率损失的关键参数模块的开路电压(VOC,module)为所有子电池VOC的总和,其损失主要源于大面积钙钛矿层的可扩展涂布质量,包括形貌均匀性、晶体
示意图(右)。b,完全由光图案化二维材料构成的场效应晶体管(FET)阵列和逻辑门器件的实物照片,制备于一片2英寸硅晶圆上。c,通过直接光图案化工艺制备的二维范德华图案的光学显微镜图像。图案化工艺的
绝缘材料。可量产的二维逻辑器件利用prompt技术,研究人员在2英寸硅晶圆上制备出了全二维材料构成的场效应晶体管(FET)阵列,以及由其构成的基本逻辑门电路(包括非门、与非门和或非门)。这些器件不仅
大清楚)。其次,如上所述,钙钛矿光伏器件原材料及加工成本低,具有很好的商业化应用潜力,正处于产业化初期。从这个意义上,钙钛矿太阳电池超越硅基电池、或与之并驾齐驱,应该不是梦想。这里不妨罗列部分具体数据来佐证之
钙钛矿薄膜的质量,阻碍大面积均匀钙钛矿晶体薄膜的形成。实验事实证明,的确如此!这些顽固的问题“折腾”我们很长时间了,一直未得到很好解决。现在,正本清源,理解了问题之源,就能提出解决问题的措施:选择甲醇
,断裂韧性提升至2.8
MPa·m1/2。该工艺仅对边缘20-50 μm区域进行处理,核心光电区域晶体完整性保持率99.5%。应用前景:◎航天领域:已应用于临近空间飞行器,组件面密度降低至0.6 kg
装机目标2025年达150 GW,柔性组件渗透率预计达15%技术挑战与发展:当前面临硅材料循环利用率低(10%)和超薄硅片(30
μm)加工成本高的瓶颈。研究团队开发的选择性化学剥离技术可将硅回收率提升至95
高于传统硅基光伏电池,此外,钙钛矿材料可以通过低温溶液加工工艺制备,降低了制造成本并拓展了应用领域。自2014年起,天合光能不断加大在钙钛矿领域的投资与布局,以481件钙钛矿专利领跑全球,远超国际巨头
装备制造业创新中心,积极布局新一代光伏产品——晶硅叠层太阳电池,并在
2025年先后宣布其在钙钛矿晶体硅叠层技术领域从电池效率到组件功率连破世界纪录,同时获得了牛津光伏在中国内地研发、制造、销售
推导,钙钛矿大尺寸制膜是前提,也是钙钛矿生产过程中最核心的技术之一,随后加上精密激光加工和高精密封装
。他们选择从薄膜电池和面板这两个领域寻找解决方案,如显示屏生产中的部分技术特别适合钙钛矿组件制备
实际生产与测试,极电也在慢慢揭开钙钛矿发电与衰减的秘密。钙钛矿作为有机物,单纯看其稳定性确实没有办法媲美作为无机物的晶硅。但钙钛矿晶体的内部结构比较稳定,不稳定的是晶粒边缘,通过做大晶粒,减少晶界间的
晶体,山东中晶芯源8英寸碳化硅单晶和衬底产业化项目建成年产能8000锭碳化硅单晶生产线,山东天岳碳化硅材料产业化项目获得国家批复。三是服务业提档升级。2家企业获批省级“两业”融合发展试点企业,4家企业
305.7万吨。济阳区获批国家级现代农业产业园、省级农产品加工业高质量发展先行县,章丘区获批创建省级现代农业强县。扶持721个村实施联村共富项目,村庄联建企业发展到1674家。以优异成绩入选第二批国家数字